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I. INTRODUCTION

To study the effectiveness of various control system design methodologies, the NASA Langley Research

Center initiated the Benchmark Active Controls Project. In this project, the various methodologies will be

applied to design a flutter suppression systems for the Benchmark Active Controls Technology (BACT)Wing

(also called the PAPA wing). Eventually, the designs will be implemented in hardware and tested on the BACT
wing in a wind tunnel..

This report describes a project at the University of Washington to design a multirate flutter suppression

system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for

designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the

design of a muhirate flutter suppression system for the BACT wing.

The contributions of this project are

1) Development of an algorithm for synthesizing robust low order m_:itirate control laws. The algorithm

is capable of synthesizing a single compensator which stabilizes both the nominal plant and multiple
plant perturbations.

2) Development of a muitirate design methodology, and supporting software, for modeling, analyzing
and synthesizing multirate compensators.

3) Design of a muhirate flutter suppression system for NASA's BACT wing which satisfies the specified
design c_iteria

This report describes each of these contributions in detail. Section 2.0 discusses our design methodology.

Section 3.0 details the results of our muhirate flutter suppression system design for the BACT wing. Finally,
Section 4.0 presents our conclusions and suggestions for future research.

The body of the report focuses primarily on the results The associated theoretical background appears in

the three technical papers that are included as Attachments I-3. Attachment 4 is a user's manual for the

software that is key to our design methodology.
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2. A METHODOLOGY FOR DESIGNING

MULTIRATE COMPENSATORS

2.1. OVERVIEW

Our design methodology defines the general approach a designer would take+ and provides the specific

tools needed, to solve a multirate control problem. The general approach dictated by the methodology is to

model a multirate system as an equivalent single-rate system, to synthesize the compensator using parameter

optimization, and to analyze the resulting closed-loop system by applying modified single-rate techniques to a

gingie-rate equivalent model of the muhirate system• A schematic of our muitirate design methodology is

_hown m Fig. 2.1. In the following paragraphs we first introduce the terminology and notauon unique to

mulurate systems and then discuss each aspect of the design methodology along with the applicable design and
analysis tools.

2.2. DEFINITIONS. ASSUMPTIONS AND NOTATION

A muhirate sampled-data system consists of a continuous plant in feedback with a muitirate compensator.

A block diagram of such a system is shown in Fig. 2.2 where the signals .vs and Yc are continuous output

xectors, u is the continuous control input vector, w is the conunuous process noise, and ¢ zs the discrete sensor

no,so. The pnmary components of the muitirate system are the continuous plant, the sampling hardware <e.g.

._D converters), a digital processor <e.g., a computer), and the signal holding hardware (e•g.. zero-order-hold

D/A converters). The samplers, digital processor and holds wdl be referred to together as the "'multirate

compensator"• We will assume that the plant is linear time-invariant, and that the multirate compensator
conforms to the Generalized Multirate Control Law Structure discussed in Section 2.3.1.
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Figure 2.2. Muhirate sampled.datasystem
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As we will later see. multirate systems which satisfy our assumpuons are periodically time-varying. To

emphasize their periodic nature we will use a double index notation tor the independent variable of a sampled or

discrete signal, For example, given a continuous signal y(t). y(m.n) represents )_t) sampled at the time

t=(mN + n)T; where the integer N is the period of repeution: T i_ the sampling period; m =0, i .... ; and
n=O. 1.... N I.

The design methodology presented in the following sections provides tools to model the closed loop system

in Fig. 2.2, to compute optimum values ofA., B:, Cz and D:. and to analyze the performance of the closed-loop
system.

2.3. MODELING A MULTIRATE SYSTEM

Two useful modeling tools are the Generalized Multirate Control Law Structure (GMCLS) and the

Equlvalcnt Time-lnvanant System (ETIS).

2.3.1. The GMCLS

The GMCLS is a control law structure which describes a multirate compensator of arbitrary dynamic

,_rder. with an independent sampling rate Ior every, compensator Input. and independent update rates for every,

processor state and compensator output. A muitirate compensator with the GMCLS is shown m Fig, 2.2. In

this figure each element of the contmuous plant output )'s is sampled at an |ndependent rate. The sampled value

of vs, _. is combined with the current processor state vector. _'. using the state space structure shown in the

figure. Each element of the processor state vector. _'. is updated at an mdependent rate. The continuous output

from the compensator, represented by the vector u. ts formed by holding the output from the digital processor.

_, with a zero-order-hold. Each element of the vector _ can be held at an independent rate to form u.

Conceptually. one can divide the multirate compensator Into two parts, the "'sampling schedule" and the

digital processor gains. This is the approach used in the GMCLS. The "'sampling schedule" is a description of

when each compensator input ts sampled and when each compensator output and processor state is updated.

while the digital processor gauns determine the dynamics of the digital processor.

2.3. !. I. Sampling Schedule for a GMCLS

In general, the sampling and updating of the elemen:s of Ys. _'. and _ in Fig. 2.2 can occur at any ume.

However. to conform to the GMCLS. we require that these sample and update acuvities occur only at integer

multiples of some fixed time. called the shortest time period (S'I'P). The actual value of the STP is arbitrary, but

t_ ts often a tunclton ol the hardware and sottware used to implement the control law. We also requwe that the

_ampltng and updating acuvtttes of the sensors, states and outputs repeat themselves alter some fixed period of
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Figure 2.4 Aperiodic Sampling Schedule

time. (This requirement disallows, for example, a system whose sampling period is a function of the time

require to execute [he control software which might vary. with control inputs values. ) The period of repeution of

the samphng schedule is callext the basic time period (BTP). Finally. we define

BTP

theinmgerN=_-_- and the value T=STP (2.1)

In our double index notation, the first index (m) in. for example, _m,n) indicates the integer number of BTP's

whicb have elapsed when the sample/update occurred and the second index (n) indicates the integer number of

STP's which have elapsed within the current BTP wben the sample/update occurred.

Wc can represent the sampling schedule for the multirate compensator graphically, as shown in Fig. 2.3.

.The figure shows a time line for each sampler, processor state, and zero-order-hold. The ume line is divided

into one STP increments. On the left side of the time line is a description of the signal or state being sampled or

updated. On the right side is a descnption of the pattlculat activity represented by me time line, e.g., state

update, sampler, or zero-order-hold. Circles on each t|me line indicate when a sample or update act|vity

,lssoclated with that particular signal or state takes place. Usually the sampling schedule is shown for only one

BTP since the sampling schedule repeats itself every. BTP.

[n most applicauons, the sampling/updating activities for a given sensor, output or state wdl be periodic

within the BTP. as is shown m Fig. 2.3. However, the sampling/updating activities do not have to be periodic

within the BTP. The only requirement is that the sampling/updating activities have some period of repctmon

¢the BTP) and that they occur at integer muloples of the STP. Once the ST]) and BTP have been selected, the

designer can arhitrardy specify sampling/updat|ng acuvtties at any multiple of the SIP within one BIP. An

example of a multirate sampling schedule in which the sampling/updating act|vities ate not periodic w,hin the

BIP is shown m Fig. 2.4. A sampling policy like th|s might be used to multiplex muluple |nputs through a

single analog to digital convener.

2.3. I. 2. Digital Processor Gains

The processor g_uns are the values ot the matrices A z. B:. C=. and D, in FIg. 2.2. Like the sampling

,chedule. they can be periodically tlme-vary|ng with a !,erlou of repetmon of one BTP. Generally. these

matnces ate tree design parameters which can be adjusted by the designer to improve the performance of the

multirate compensator. The synthesis algor, hm discussed in Section 2.4 c_n be used to calculate opt|mum

values lor the._e galns.



2.3. 1.3. State Space Formulation of the GMCLS

A compensator with the GMCLS _:an be modeled as a peri(xlically time-varying discrete-time system. The
state space form o[ the GMCLS is given by

z(m,n+l ) = Ag(n)z(m,n ) + Bg(n))_m.n) (2.2a)

u(m,n) = Cg(n)zlm, n) + Dg(n)z(m,n) (2.2b)
where

z(m,m= lS(m.n) T -v(rn,mT ihm,n)rl r (2.3)

and _(m.n) is used to model the sample and hold activity from _(m,n) to u(re,n). The form of A_, Be, C e and Dg
is given in IBerg. Mason & Yang 1991} and [Mason & Berg 1992] which are included as Attachments I and 2.

We should emphasize that Eqn. (2.2) is used to model the complete samplins/upclating activities and

dynamics of a muhirate compensator. It would not be used in the actual implementation of the compensator.

When implemented, the sample and hold activities of the inputs and outputs would be pefformc_l by appropnate

hardware. The only dynamics to be calculated are those associated with the processor state vector E.

2.3. !.4. Factored Form of the GMCLS

Equation (2.2) is a convenient form to model the general mulurate compensator. The difficuhv with

Eqn. (2.2) is that it ties up the digital processor matrices, Az(n), Bz(n), C:(n), and D=(n), in the model matrices

Ag(n), B_(n), Cg(n), and De(n ). The matrices Az(n_, B:(n), C:(n), and Dz(n). which describe the dynamics of

the digital processor, are the unknown design parameters which we wili later optimize. We can separate the
processor dynamics matrices from the model matrices as follows.

Define the composite compensator matrix:

P(n)=[ Og(n) Cg(n) 1
Bg(n) Ag(n)

(2.4)

and factor P(n) as tollows

P(n)= S I (n)Pz(n) -;2(n)+ S3(n) 12.5)

Dz(n) Czfn) ]where Pz(n) = (2.6)
Bz(n) Az(n)

and S I , $2 and S3 are the switching matrices defined by the sampling schedule for the compensator. Their

exact form is given in [Mason 19921 and IMason & Berg 19921 (see Attachment 1).

It is important to note the difference between P1"n)and P:(n) in Eqn. (2.5). P(n) is a periodically time-

varying matrix defined by Eqn. (2.4), It includes all the information about the processor gains and the

sampling/update schedule. Pz(n) contains only the gains for the processor dynamics and is indept:ndent of the
sampling schedule.

2.3. I. 5. Implemer, ration

The Generalized Multirate Control Law Structure (GMCLS) provides a framework for deahng with

multiple sample/update rates, time delays, and periodically time-va, 'ing gains in a digital control system. It

gives the designer freedom to either sel ,'t the "sampling schedule" thai best solves tl',. rr_t,,:m, or if necessary.

to use the "sampling schedule" dictatet, xisting hardware and software, with out IDa:mg to worry about the
bookkeeping involved with multiple rates. I time delays.



lr practice, the GMCLS is implemented in software and is rarely used directly by the designer. The

designer need only supply the sampling schedule and values for the digital processor gains to provide a

complete compensator description. This description can then be transformed directly into a single-rate

periodically time-varying system using the GMCLS.

The GMCLS is used extensively by the synthesis algorithm described in Section 2.4. and by the modeling

and analysis software referred to in Section 2.5. Documentation for this software is provided in Attachment 4

2.3.2. The Equivalent Time-invariant System (ETIS)

A muitirate compensator with the periodically time-varying structure discussed in Section 2.3.1.3 can be

further transformed into a single-rate Equivalent Time-lnvariant System (ETIS) with the form shown below

._(m+ i,0) = A E xf m,O) + B E uE_m,O) (2.7a)

YE(re,O) = CESta,O) + D EuE(m,O) (2.7b)

where

l
1 / u(m,i) l"++=/+.,,. r+0,

• ,md u_m.O,= I / <2.8)
I-X's(m.N-' ,J I--u(mdV-I)-I

We use the subscript E to denote vectors and rcatrices smctly associated with the ETIS. See [Meyer & Bun'us

1975] or [Mason 1992] for a definition of AE, BE. C E and D E.

A key feature of an ETIS is that a multirate, or periodically time-varying system will be staole if and only if

its ETIS is stable [Kono 1971]. Also notice that the ETIS input/output vectors are _omposite vectors

contmning the input/output values of the multirate (or periodically-time varying) system at N sampling times.

Consequently, an ETIS is always MIMO even if the original system is SISO. If the multirate system has p

inputs, q outputs and a sampling period of one STP then the ETIS is a single-rate linear time-invariant system

with N p inputs, N q outputs and a sampling period of one BTP.

2.3.2. !. Implementation

The F,TIS is fundamental to the analysis of multirate systems. It allows one to evaluate the performance

and stability of complex systems comprised of muitirate, periodically time-varying and/or single-rate

components using only techniq,,es developed for linear time-invariam single-rate systems. For example, to

evaluate the stability of the system in Fig. 2.2, we would first transform the multirate compensator into its ETIS

with a given value for N. Then we would discretize the plant at the s'rP of the compensator using a zero-order-

hold and transform the resulting single-rate system into an ETIS using the BTP of the compensator. Next, the

plant and compensator ETIS's could be combined in feedback just as if they were traditional single-rate

systems. Finally, we could determine the stability of the original multirate sampled-data system from the

eigenvalues of its dosed-loop ETIS

Documentation for software capable of transforming multirate and single-rate systems into their ETIS's is
provided in Attachment 4.

2.4. SYNTtlESIZING A M ULTIRATE COMPENSATOR

When designing a multirate compensator for the system in Fig. 2.2 there are three components one must

consider: the compensator structure (this includes the dynamical order of the digital processors, the sampling

schedule, and the values for the digital processor gains. In our design methodology the compensator structure

and sampling schedule are selected by the designer based on the open-loop plant dynamics, the hardware

constraints, if any. and the desired closed-loop performance. Values for the digital processor gains are



calculated by our synthesis algorithm so as to provide optimum closed-loop performance for the chosen

compensator structure and sampling schedule. In the following paragraphs we discuss compensator structure

and sampling schedule selection, and provide a brief description cf our synthesis algorithm. A complete

discussion of the algorithm is provided in Attachment 4 and in [Mason & Berg 1992] (also included as
Attachment I ).

2.4.1. Compensator Structure and Sampling Schedule Selection

The choice of compensator structure and sampling schedule is problem dependent. It depends on the

hardware constraints, the open-loop plant dynamics, and the design objectives. Two often used muitirate

compensator struct, ures are worthy of mention, however. They are successive loop closure and coupled

succes:ive loop closures. (Also see [Berg 19861 for a discussion of successive loop closures.)

2.4. !. 1. Successive Loop Closures Structure

The simplest muhirate compensator structure is successive loop closures (SLC). This structure ':onsists of

multiple decoupled single-rate control loops, each loop operating at a unique sample/update rate. l'he state

space representation of a SLC structure with two loops is

lXslow_n+l)_ = _ ,2.9a)
ast°wJtXstowOZ_J L 0 bstowjtyslowt,z_ j

L0 C lowJix low(.,IL0 d lowjt: low(n,j ,29b>

where v represents the sampled input fi'om the sensor and u is the output to the zero-order-hold. The subscripts

fast and slow denote inputs, outputs and states which are sampled/updated at a fast or slow rate, respectively.

SLC is best applied to control problems where the closed-loop dynamics are comprised of some fast and

some slow dynamics with the bandwidths of the two separated by at least a factor of four. In this type of

problem, the "fast" loop(s) of the SLC compensator, operating at a last sampling/update rate, would be used to

control the high bandwidth dynamics, while the "slow" Ioop(sL operating at a slower sampling/update rate.

would be used to control the low bandwidth dynamics. Problems such as these usually fall into one of two
categories.

In the first, the open-loop system exhibits both fast and slow dynamics. The multirate compensator is used

to improve the performance of this system without drastically changing the fast or slow bandwidths. An

example of this type of problem is an aircraft yaw damper/modal suppression system. The aircraft is open-loop

stable and has some fast dynamics associated witii the flexibility of the airframe and some slower dynamics

associated with the yawing motion of the entire aircraft. A multirate compensator for such a system might

consist of a high bandwidth loop to damp the airframe vibrations and a low bandwidth loop to improve yaw
damping.

In the second type, the open-loop dynamics of the plant are arbitrary, but tn feedback with the compensator

the closed-loop system exhibits the characteristic fast and slow dynamics. These systems usually have a

decoupled structure where sets of open-loop modes ate strongly controllable and observable with a particular set

of inputs and outputs and weakly controllable and observable with the remaining inputs and outputs. An

example of thi: type of system is the two link robot arm (rLA) used in [Berg. Amit & Powcll 19881, and in

[Yang 1988]. All four of the open-loop poles of the TLA are at the origin of the "s" plane. The plant has two

inputs and two outputs. Only two of the modes can be controlled with any one input. Similarly, only two of

these modes can be observed with any one output. In the multirate design, one input/output pant is used to place



twoof theclosed-loop poles at a high frequency and the other input/output pair is used to place the other two
closed-loop poles at a low frequency.

Sample rate selection for the individual control loops of a SLC design follows the same guide lines used in

single-rate sample rate compensator design: the sample rate for each SLC loop should be 5 to 20 times faster

than the closed-loop bandwidth desired for that loop. See [Franklin Powell & Workman 1990] for a discussion

of sample rate selection for single-rate systems.

2.4. I. 2. Coupled Successive Loop Closures Structure

The coupled SLC structure is the same as the traditional SLC structure except the designer can include

cross feed terms which couple the fast and slow inputs and outputs of the design. In the state space formulation,

cross coupling is represented by non-zero off diagonal terms in the compensator gain matrices. An example of

a compensator structure with cro,, feed from the slow sampled sensor to the fast sampled/updated control loop
is given in Eqn. 12.10).

0

..,ow<.g" <:,<,wJlx,,ow<,,,fL0 <_'o,,,Jl:',,ow(,,,I ,2.10hi

This structure is best applied to systems which have coupling between their fast and slow closed-loop dynamics.

See [Yang 1988] for a discussion of cross feed in the TLA problem.

2.4.2. Optimizing the Digital Processor Gains

Having chosen an appropriate compensator structure and sampling schedule, the designer can use our

synthes;," algorithm to calculate optimum values for the digital processor gains A z. Bz. Cz and D z such that the

closed-k, r system in Fig. 2.2 minimizes a quadratic cost function.

The primary design parameter for the synthesis algorithm is the quadratic cost function. By selecting an

api, ropnate cost function, the designer can influence the performance of the resulting closed-loop system. The

cost function minimized by our synthesis algorithm has the fort4

f T IF QI M ]rx,c(t )
J: lira E_fVcr(t) u it) " t2.11),-- i, 1LM,O2JL,,,t,

where ] is the cost associated with the closed-loop system shown in Fig. 2.2. The vector x7 is the conii,luous

criterion output and u is the continuous control input. QI, Q2 and M are the cost function weighting matrices
and are free design parameters.

The cost function in Eqn. 12.11) has the same form in a continuous time LQR design. Thus the cost

associated with the optimized multirate compensator and that of an LQR design can be compared directly. The

designer can also use this fact to help select appropriate values for QI, Q2 and M.

To improve the robustness of the compensator, the synthesis algorithm can optimize the digital processor

gains for multiple plant conditions simultaneously. The resulting compensator will stabilize the each plant

condition and provide overall optimum performance. This is accomplished by minimizing the new cost

function of Eqn. 12.12) which is the sum of the costs associated with each plant condition.

Np Np ( iF ¢ .w,1r,.<.,i,_11
,: ,:,Zs,=,:,,-_-E"me_l"<_">. "_"' t M/ ,+,JL.,,,,Jl <:"_>
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t!_re Ji is the cost associated with the i th plant perturbation and there are Np plant perturbations.
Optimum values of A:. Bz, C:, and Dz. occur when

°_J o3J dJ dJ
-,ff_=0, -_-_-=0, _-_-=0, and =0 or equivalently when _-_-J =0 (2.13)

Our algorithm use a gradient type numerical search and a closed form expression for the gradients in

Eqn. (2.13) to determine values of the digital processor gains such that the conditions in Eqn. (2.13) are

satisfied. Refer to [Mason & Berg 1992] in Attachment l tbr a closed form expression for the gradients in

Eqn. 2.13. The synthesis software uses an iterative process to determine optimum values for the digital

processor gains and the user must provide the software with an initial guess for A z, Bz, Cz, and D-. The initial
guess must stabilize every plant condition considered in Eqn. (2.12).

2.4.3. Implementation

In practice, the steps for designing a compensator with our methodology are

I ) Construct a continuous LQ regulator for each plant condition which achieves the desired performance
lor that condition.

2) Based on the desired closed-loop dynamics and the constraints imposed by the system hardware,

choose an appropriate compensator structure and sampling schedule.

3) Using the chosen sampling schedule and compensator structure, design a compensator which

stabilizes all plant perturbations. When the desired compensator structure _s one of the two structures

discussed in the previous section, the designer can use successive loop closures to find a stabilizing

value for the digital processor gains. In successive loop closures, the plant is stabilized by closing one

loop at a time, from one set of inputs to one set of outputs. To obtain a muitirate compensator, each

loop is closed using a different sampling/update rate. When, due either to a complex sampling

schedule, or the complexities of the control problem, successive loop closures cannot be used to find a

stabilizing value for the digital processor gains, use Yang's algorithm tsee [Yang 19881). This may

seem counterproductive at first, since one of the reasons for developing our algorithm was the

computational inefficienctes of Yang's algorithm. However, our experience has shown that, in

general, Yang's algorithm converges to a stabilizing compensator fairly rapidly. It is the computation

time associated with optimization of this stabilizing solution that tends to be excessive.

4) Calculate optimum values for the digital processor gains using the synthesis algorithm of

Section 2.4.2. The cost f.mction weighting matrices tot the optmlization are the same as those used to

design the LQ regulators in Step 1. The starting point for the optimization is the stabilizing
compensator designed in Step 3.

See Attachment 4 for the complete documentation of the software that implements the synthesis algorithm.

2.5. ANALYZING A MULTIRATE S YSTEM

Muhirate system analysis is difficult because the periodic nature of a multlrate system implies that a

traditional transfer function does not exist. Thus. common analysis tools such as frequency response or Nyqmst

diagrams are not directly applicable to multirate systems. Our solution is to transform the multirate system into

a linear ttme-invariant single-rate system, the ETIS, and then apply established single-rate analysis techniques

using the Z-Transibrm of the ETIS. (Note: we write the Z-Transform of an ETIS where N=BTPIS'I'P as

GE (zN).) The following paragraphs discuss live useful tools for analyzing the perfom_ance and stability of a
multirate system based on its ETIS.
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??-5.1. Gain and Phase Margins

In Section 2.3.2 we noted that a multirate system will be stable if and only if its ETIS is stable. Therefore,

we can determine whether the multirate system is stable by applying the Nyquist criterion to its ETIS. Since all

but mvial ETIS's are MLMO. we must use the multiloop Nyquist stability criterion. The multivanable Nyquist

:s a plot of the eigenvalues of the ETIS loop transfer funcuon as the discrete variable z traverses the unit circle
[MacFarlane 19701 [Maciejowske 199('"

When the muitirate system is SISO we can obtain traditional gain and phase margins from the muRiloop

Nyquist plot. Let GE(Z N) be the ETIS loop transfer function and let A be some constant gain and phase
uncenmnty at the plant input. If

AlZ) = ke/0 where k _/0 is a scalar (2.14)

then AE(zN) = i k J 0 (2.15)

where i is and N × N identity mamx

Now the new loop transfer function with the gain and phase uncertaanty of Eqn. (2.15) can be w,itten as

HE (zN_loop = GE (z?') k e/0 (2.16)

The multiloop Nyqmst plot of HE (z'V)loop is just the multiioop Nyquist plot of GE lz'V) scaled bv the gain k and

rotated by the phase shift 0 - the same as in traditional SISO Nyqmst plots. Gain and phase margins for the

multitate system can therefore be obtained from the multiloop Nyquist plot of GE (zN) by determining the

values of k and 0 which destabilize the E'I'IS. (See [Thompson 19861 for an alternate derivauon using Kranc
operators. )

When the muitirate system is MIMO, the gain and phase margins calculated by this procedure apply

simultaneously to all inputs and outputs, and are consequently not realistic measures of robustness. To obtain

realistic measures of robustness for a MIMO muittrate system, a norm based approach such as singular value
analysis is required.

2.$.?. Singular Values

Singular values are useful for measuring the robustness of MIMO multirate ,*stems. I'he key step =rn

muitlrat¢ singular value analysis is transforming the multirate system in Fig. 2.5 into an ETIS system which has

the output feedback form shown m Fig. 2.6. Since the multirate system wdl be stable if and only nf its ETIS is

stable, the closed-loop system nn Fig. 2.5 will b¢ stable for a gnven value of A provided the closed-loop system

m Fig. 2.6 us stable tora corresponding value of A E. Thus we can use single-rate teci_niques to evaluate the

robustness of the ETIS system and relate those results directly to the associated multirate system.

,j
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2.5.2.1. Unstructured Singular Value Analysis

A bound on the smallest value of_lAE) for which AEdestabilizes the system shown in Fig. 2.6 can be

calculated using unstructured singular value analysis. This system will be stable for all AE such that

O(AE (zN)) < 1 for all z on the unit circle (2.177
O(GE(zN))

l see [Maciejowski 1989]). This result, however, is only a measure of the size of the smallest destabilizing AE

and is generally not a measure of the size of the smallest destabilizing uncertainty A. Because the input/output

vectors of an ETIS are composite vectors, containing the input/output values of the multirate system at N sample

times, AE can be a complex function of the values of A at N sample times. (The relation between AE and A is

given by Eqn. 2.7. _ The size of the smallest destabilizing AE found using unstructured singular value analysis is

only a conservative estimate of the size of the smallest destabilizing A. This estimate accounts for not only the

fictitious perturbations normally associated with unstructured singular values, but also for time-varying and
non-causal perturbations.

Consider the simple case where A is a constant. From Fig. 2.5 we have that

w=Av (2.18)

For an ETIS with N=2

Iw(m,0)l = JAIl AI2 l_v(m.0)1
wE=AEv E or [w(m,l)J LA21 A_-,JLv(m,l)J (2.19)

A destabilizing A E determined by singular value analysis might, for example, include block diagonal elements

in AE which are unequal, e.g. A II ¢ A22. This corresponds to a time-varying perturbation because the gain

between w and v varies with time. Another such AE could include non-zero upper block diagonal elements in

AE, e.g. A 12 ¢ 0. This corresponds to a non-causal perturbation because a future input, vim, i), can affect the

current output w(m.0).

We can eliminate this conservativeness by restricting the allowable perturbations in AE. This leads directly

to structured singular value analysis.

2.5.2.2, Struciured Singular Value Analysis

In order for the ETIS ul.certainty A E _ represent the actual uncertainty A, its structure must obey

Eqn. (2.77. Finding the size of the smallest destabilizing Ag subject to Eqn. (2.7) requires the solution of a

strictured singular value problem, For the system in Fig. 2.6 we define the structured singul__r value, p, as

{( Oifdet(l-GE(z'v_AE(zN))'Of°railA_ABD )-I (2.20)I_(GE(zN))= rain [G(A(z))] such that det(I-GE(zN)AE(zN))=O otherwise
AeAnO

where ABD is the form of the permissible block diagonal perturbations _t and the structure of AE must satisfy

Eqn. (2.77. The size of the smallest destabilizing penurbmion _(Amin) satisfies

I
= sup/J(GK(z 'v )) where z 'v = e _° (2.21)

G( Amin )

For a discussmn ofp and ABD see IDoyle 1982].

,...'_,_ __ _. _ :__
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Unfortunately, even a simply structured dynamic uncertainty A(z) transforms to an ETIS uncertainty,
AE (zN), with a complex structure. For example, if N--2 then the ETIS of Atz) is

AI:(z')=TLz(A(z)-A(-z)) A(Z)+ A(-z) .J (2.22)

In order to find the value ofo(Anun) using Eqn. (2.21), one must solve Eqn. (2.20) with AE constrained to have

the structure in Eqn. (2.7). Currently there is no general technique for solving this problem. When, however,

the uncertainty, A, is a constant, as is the case for many problems, the ETIS uncertainty, AE, is also a constant
with a repeated block diagonal form.

AE = diag(A, A..... A) with N blocks. (2.23)

There are several good methods for estimatingofAmin) when A E has this block diagonal structure. One simple
method for estimating/.t when Ais strictly diagonal is derived in [Safonov 1982]. It is

la(Glv(z 'v)) < inf(_(abs(DGN(z N) D-I )) = A.p(GN(Z N))D (2.24)

where abs(A) is a matrix such that {abs(A)]ij = IAij[; Aij is the itj th element of A; and _¢pis the Perron-Froheniuseigenvalue.

2.5.4. 3 Implementation

The procedure tbr pertbrming singular value analysis via the ETIS is as follows

1) Transform the problem into the form shown in Fig. 2.5

2) Discretize the plant at the STP of the compensator and compute the ETIS of the plant using the N of
the compensator

3) Combine the ETIS of the plant and compensator to obtain the closed-loop system shown m Fig. 2.6

4) Use any applicable single-rate singular-value based analysis tool to compute the size of the smallest
destabilizing uncertainty bE.

5) Interpret the results in the light of the fact that the computed results are for an ETIS uncertainty AE

whereas the actual plant uncertainty is A. AE is a function of A as given by Eqn. 2.7 and so the results

might be conservanve unless structured singular value analysis is used.

2.5.3. Maximum RMS Gain

The maximum RMS gain of a SISO single-rate system is the maximum gain on that system's Bode plot.

As already noted, a traditional Bode plot cannot be generated for a multirate system. However, the maximum

RMS gain of a SISO multirate system can be computed, it is the H,,. norm of the ETIS transfer function. This

value, shown in Eqn. (2.25). plays the same role as the maximum Bode plot gain of a single-rate system.

sup RMS(y(m.n)) = sup RMS(y_:(m.0)) = IIGE(zN)IIo, (2.25)
RMS(u),tORMS(u(m.n)) RMS_ur.J,,ORMS(uE(m.O))

Actually. Eqn. (2.25) can be used to calculate the RMS gain of SISO or MIMO systems. It simply states that

the maximum RMS gain of a transfer function G E is equivalent to the H.,, norm of G E. See also the related
work of [Sivashankar & Khargonekar 1991 ].

Unlike linear nine invariant single-rate systems, the discrete input signal resulting in the maximum

multirate RMS gain does not necessarily have the szmple form s;n(m Tin). Instead it is comprised of the sum of
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sinusoids of several distinct frequencies. Details on computing the signal of maximum RMS gain for a

multirate system are given in [Mason & Berg 1992] (Attachment l).

2.5.3.1 Implementation

One simple method for determining the H, norm is to plot the maximum singular value of G E as z

traverses the unit circle. Ho_(GE) is then the peak value on that plot.

It is important to remember that Eqn. (2.25) is a measure of the discrete RMS gain between the discrete

inputs and outputs of interest. Often the designer is interested in calculating the maximum RIMS gain between a

continuous input and output of a sampled-data system. A good estimate of the RMS gain in this case can be

found by sampling the continuous input and output of interest at a fast rate. The result is a muitirate system -

the input and output of interest are sampled/updated at a fast rate while the other inputs and outputs are sampled

at the rate appropriate for connection to the multirate compensator. (This is also useful for determining the

inter-sample behavior of a sampled-data system.) The maximum RMS gain can then be calculated using the

ETIS of this new system.

2,5,4, Steady-State Covariance

A common measure of performance is the steady-state covariance of select outputs in response to a

disturbance input. In a muitirate system the "steady-state" covariance values are periodically time-varying.

Fortunately, the periodic "'steady-state" covariance values at each sample/update time are straightforward to

calculate using the ETIS.

It is easy to show that

I E{y(m,O)y(m,O)T }

E{YEY_} =1 E{y(m,l):,(m,O)T}

LE{y(m, N - i)y(m,O) T}

E{y(m,O)y(m, I)T} ... E{y(m,O)y(m, N - I)T}

E{y(m, l)y(m,I)T} E{y(m, l)y(m,N - I)T}

: ". i

E{y(m,N-l)y(m,l) T} ... E{y(m,N-l)y{m,N-l) T}

(2.26)

The diagonal block elements of Eqn. (2.26) contain the steady-state covanance values at each sample/update

time of the corresponding multirate system. Therefore, the steady-state covariance values can be found by

calculating the ETIS of the multirate system and computing the steady-state covariance values of the ETIS using

the discrete Lyapunov equation. Refer to [Kwakernaak & Sivan 1972]. Algorithms for calculatit_g discrete

covariance values are widely available {e.g., in Matlab and in Matrixx ),

2.5._. Time Domain Simulations

Time domain simulations are straightforward to compute using the ETIS and Eqn. (2.7). As noted in

Section 2.5.3, inter-sample behavior can be obtained by sampling the continuous inputs and outputs at an

arbitrarily fast rate. Documentation for the M-File mrsim, which generates a time domain simulation of a

multirate sampled-data system using the El'IS is provided in Attachment 4.

2.6. SUMMARY

The tools presented in this section form the foundation of our multirate design methodology, and provide a

unified approach to multirate modeling, synthesis and analysis. Using these tools one can model a complex
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multirate compensator, determine the optimum values of that compensator's processor gains, and analyze its

robustness and performance. In many cases the multirate systems modeling and analysis can be performed

using commercially available software in conjunction with the ETIS. For those tools specific to multirate

systems, including muitirate compensator synthesis, documentation for custom software has been provided inAttachment 4.



3. APPLICATION OF THE MULTIRATE DESIGN METHODOLOGY TO THE

DESIGN OF A FLUTTER SUPPRESSION SYSTEM FOR THE BACT WING

3.1, INTRODUCTION

To demonstrate some of the advantages of multirate control and the capabilities of our design methodology,

we designed several flutter suppression s,stems for NASA's BACT wing using the methodology in Section 2.

A summary of our designs is presented in the following paragraphs. In Section 3.2 we describe the model wing

and its open-loop characteristics. In Secdon 3.3 we discuss our design g_als and constraints. In Section 3.4 we

discuss our design approach and the details of the design process. In Section 3.5 we present our flutter

suppression system design results. Finally, we end the chapter vith some concluding remarks in Section 3.6.

3,2. TilE MODEL WING AND ITS O PEN 4, OOP DYNAMICS

3.2.1. Model Wing Description

The BACT wing was developed by NASA Langley for the Benchmark Models Program. It consists of a

rigid airfoil mounted on a flexible base. The base, called the Pitch and Plunge Apparatus (PAPA), provides the

two degrees of freedom needed to model classical wing flutter. Our designs used the single control surface (CS)

located on the trailing edge of the airfoil and two accelerometers, one near the trailing edge (TE) of the airfoil

and one near the leading edge (LE). A diagram of the BACT wing is shown in Fig. 3. !. A detailed description

of the BACT wing can be found in [Durham, Keller, Bennett & Wieseman 1991] and [Bennett, Eckstrom,

Rivera, Dansberry, Farmer & Durham 1991 ].

The flutter suppression system was designed using a 16 th order linear stair model of the BACT wing

developed by NASA Langley's Structural Dynamics Division. This model consists of 4 rigid body states

corresponding to the pitch and plunge modes, 6 unsteady aerodynamic states, a second order actuator model, a

second order Dryden filter, and two first order anti-aliasing filters. A block diagram of the mathematical model

is shown in Fig. 3.2 on the following page.

We were provided wi:h 24 different mathematical models of the wing. These models describe the motion

of the wing in freon at 24 different operating points. The operating points include dynamic pressures above and

below the critical flutter pressure at three different roach numbers. See Table 3. ! on the following page for a
summary of the operating points.

NACA 0012 Alrfoll

Figure 3. I. BACT winll
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Table 3.1. Operaung points for BACT wing. All operanng points assume Freon medium

Dynamic Pressure (psf)
(Nonunally unstable operating points are in gray)

Mach 0.50 75 100 122 132 150 175 200 225

Mach 0.70 75 100 125 136 146 175 2f_ 225

Mach 0.78 75 100 125 141 151 175 2(;_ 225
I

I

3.2.2. Open.Loop Dynamics

The response of the open-loop BACT wing model at each operating point is characterized by two dominant

modes - the pitch and plunge modes. The poles associated with pitch and plunge at mach 0.5 and 75 psf are

indicated on Figs 3.3-3.4. As the dynamic pressure increases, one pau"of these dominant poles moves towards

the nght half plane and eventually crosses the imaginary axis at the flutter stability boundary. Figures 3.5-3.6

._how the migration of these dominant modes as dynamic pressure increases. The locations of the open-loop
poles not shown in the figures remam relatively constant.

The dominant pitch and plunge modes are observable at all operating points with either the "rE or the LE

accelerometer outputs and are controllable at all operaung points usnng the CS command input. The zeros of the

CS command to TE accelerometer and the CS command to LE accelerometer transfer functions are shown in

Figs. 3.3-3A for an operatnng ponnt of roach 0.5 and 75 psf. As dynanuc pressure increases, the non-minimum

phase zeros associated with the TE accelerameter migrate into the left half plane. The minimum phase zeros

that ate associated with the LE accelerometer and located near the dommant poles migrate into the right half
plane. See Figures 3.5-3.6.

At low dynamic pressures the transfer functions from CS command input to both the TE and LE

accelerometer outputs are non-minimum phase. Non-minimum phase systems ate typically more difficult to

control than mnnimum phase systems. An ahemauve output is one which measures the difference between the

two accelerometers. This new output is essentially pitch acceleration. The CS c,_mmand to pitch accelerauon

transler functnon as minimum phase for all operating points. Figure 3.7 shows the locations of the zeros near the

pitch and plunge modes as dynamic pressure increases. It turns out that the BACT wing is fairly easy to control

using this new output. The problem ts that the pntch acceleration output is artificially created and assumes

perfect measurement of TE and LE accelerations. In reality there as some uncertainty in the TE and LE

acceleration measurements that must be accounted for in any design. Therefore we did not use the pitch

acceleration output directly in our designs. We did. however, use the pitch acceleration output to determine an

lniual stabilizing compensator for the synthesis algorithm. This is discussed further in Secuon 3.4.3
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3.3. DESIGN GOALS AND CONSTRAINTS

The goal of the design was to synthesize a muitirate flutter suppression s_,stem which stabilizes the BACT

wing at all 24 operating points. In addition to stability, NASA Langley specified the following constraints.

Control Activity Constraint: For unity RMS white noise input disturbance i 1 in/see RMS), the steady-

state covariance of the CS deflection must not exceed 0.0625 deg2 ¢0.25 deg RMS), and the CS
deflection rate must not exceed 65 deg2/sec 2 (8.0 deg/sec RMS).

SamplinR Rate Restrictions: The minimum sampling period is 0.005 seconds. For multirate sampling all
sampling periods must be multiples of 0,005 sec.

Computational Delay: All compensators must be designed with a minimum 0.005 second computat=onal
delay.
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Robusmess Constraints: The gain and phase margins at the compensator inputs ar,d output must be :ttdb

and =1:45°. At the compensator input, which has two sensors, we use the generalized gain and phase

margins based on the singular value. The specified gain and phase margins correspond to a minimum

value of 0.75 for the maximum singular value of a multiplicative uncenaJnty at the compensator inputs
(see [Mukhopdhyay & Newsom 1984]).

3.4. FLUTTER S UPPRESSIOIq S YSTFAI DESIGN

Wc used the methodology discussed in Section 2 to design the flutter suppression system. The specificsteps for this design were:

1) Select an LQR cost function such that the BACT wing in feedback with the LQ regulator satisfies the
criterion specified by NASA

2) Choose an appropriate muhirate compensator structure and sampling schedule based on this LQRdesign

3) Find a set of processor gains so that the compensator stabilizes the BACT wing

4) Synthesize a muitirate compensator which minimizes the LQR cost function of step ( 1) at a few select
operating points using the algorithm discussed in Section 2.4

5) Check the performance and robustness of the closed-loop system

6) Iterate on items (1)-(5) as required

We elaborate on the details of each step in the following paragraphs.

3.4.1. Selecting the Cost Function Weights

The multirate synthesis algorithm finds optimum values of the compensator's digital processor gains by

minimizing a quadratic cost function with respect to those gains. This optimization can be performed for

multiple plant conditions simultaneously. We used the multiple plant capabilities of the algorithm to he' '

ensure that the compensator stabilizes the wing at all 24 operating points. Instead of using all 24 operating

points for the optimization we used six representative ones. The six include the operating points at the extremes

of raach number and dynamic pressure, and two operating points midway between the extremes. These

operating points are listed in Table 3.2 on the following page. For the fault tolerant design discussed in

Section 3.4.2.4 we included four additional operating points at roach 0.50. These operating points are grayed inTable 3.2.

For each operating point we selected a unique set of weights for the synthesis algorithm's cost function.

The weights were based on a continuous LQR design which weighted the pitch and plunge modes, and the CS
command input of the BACT wing. The cost function has the form

where x = {-_1 x2 -g3 x4 }T and the xi are the four states associated with the pitch and plunge mode in a

modalized version of the BACT wing model. States x I and x 2 correspond to the complex conjugate poles which

migrate to the left as dynamic pressure increases, see Fig. 3.5. States x 3 and x 4 correspond to the complex

conjugate poles which migrate to the right as dynamic pressure increases, see Fig. 3.5. The latter set of poles

cause instability in the BACT wing at high dynanuc pressures. The variable u is the CS command signal.

For each operating point, the weights, Q I and Q2, were chosen so that the closed-loop damping of the pitch

and plunge modes was greater than 0.07, and the RMS control constraints specified by NASA were satisfied.

For comparison, the damping in the open-loop BACT wing at the stable dynamic pressure of 75 psf is



approximately0.025. The weights for each operating point were scaled to obtain a unity LQR cost for a 6

inch/sec RMS white noise disturbance input.

Table 3.2. Cost function weights. Grayed operating points used only lor fault tolerant design.
I , .

Operating Point State Weight (Q I ) Control Weight (Q 2)

Mach 0.50

Much 0.50

Maeh 0.50

Much 0.50

Much 0.50

Much 0.50

Mach 0.70

Mach 0.70

Mach 0.78

Mach 0.78
AIT

75

132

150

175

200

225

125

175

75 }sf

225 psf

_sf diag[l.2xl0 "2 1.2x10 "2 12 121 610

_f diag[5.0xl0 "3 5.0x10 "3 3.5 3.5] 500

•_f diag[5.0xl0 "3 5.0x10 "3 2.5 2.5] 750

_'f diag[4.5xl0 "3 4.5x10 -3 1.4 1.4] 900

:Dsf diag[5.8xl0 "3 5.8x10 -3 0.58 0.58] 1754

)sf diag[ 9.6x10-4 9.6x10 "4 9.6x!0 -2 9.6x10 "2] 4800

3sf diag[l.3xl0 "2 1.3x10 2 6.4 6.4] 3900

)sf diag[l.9xl0 -3 1.9x10 "3 0.56 0.561 5600

diag[8.gxi0 2 8.8x!0 "2 44 44] 8800

dia_,[3.3xl0 -4 3.3x10 -4 1.6xi0-2 1.6x10 -2] 216()00

3.4.2. Selecting the Compensator Structure and Sample Rate

Traditionally, the design of a multirate compensator structure begins with a successive loop closures

structure and then incorporates cross feed between the loops as necessary. As discussed in Section 2.4.1,

muitirate successive loop closures is best applied to problems in which the closed-loop system dynamics can be

separated into some fast dynamics and some slow dynamics. The BACT wing however does not exhibit those

closed-loop characteristics. Closed-loop bode plots, from control input to accelerometer outputs of the BACT

wing in feedback with a LQ Regulator. are shown in Fig. 3.8. The LQ Regulator was designed using the cost

function weights for the mach 0.50 75 psf operating point specified in Table 3.2. Therefore the bode plot ],

representative of the closed-loop dynamics we are trying to achieve with the tlutter suppression system. Notice

that the closed-loop dynamics have only one peak - that associated with the pitch and plunge modes - and do not

exhibit the last and slow dynamics traditionally associated with successive loop closures. Consequently, a

traditional multirate successive loop closure structure is not directly applicable to this problem.

Instead of basing our muitirate compensator structure on the closed-loop dynamics of the system, we

selected compensator structures which used different sampling schedules to reduce either the number of

computations or the hardware required to implement the compensator. We designed four compensators: a

single-rate (SR); a multirate successive loop closures type I MRSLC); a multirate with multiplexed inputs

IMRMI); and a single-rate fault tolerant (SRFT). All of these compensators are second order except the fault
tolerant design which is fourth order.

3.4. 2. I. Single-Rate ¢SR)

The single-rate compensator was designed for comparison with the other compensators. A block diagram

of this compensator is shown m Fig. 3.9. The sample/update rate for this compensator is 50 Hz. This rate is

approximately 10 times the frequency of the dominant pitch and plunge modes. The compensator includes a

0.02 second computational delay, w'htch satisfies NASA's computational delay requirement. This was achieved

by constraining the compensator's direct feedthrough term to be zero.

The _i_.*.e_pace structure of the compensator is

" ' It"'"I+F °
a2J[h(m.n) ]LI ¢3.2a)Accel(m.n)]
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c-) _l(m n)l
(3.2b)

where Zl and z'2 are the digital processor states; TE Accel and LE Accel are the acceleration inputs from the

A/D converters; and CS Cmd is the command output to the zero-order-hold, ai, hi. and q are the free gains

(matrix elements) which were optimized. The other gains were constrained to the values _hown. The structure

in Eqn. (3.2) is a minimum realizauon of the second order compensator. See [Berg. Mason & Yang 1991 } for a

discussion of minimum realizations. The sampling schedule for Eqn. (3.2) is shown in Fig. 3.9.

3.4.2.2. Muhirate Successive Loop Closures ( MRSLC)

The MRSLC compensator was designed to reduce the total number of multiplications per unit time

performed by the compensator's digital processor. The compensator is comprised of two first order loops. Both

loops have two inputs. TE and LE acceleration, and one output. CS command. One of the loops is

sampled/updated at 50 Hz. the same as the single-rate design, and the other is sampled/updated four times

slower at 12.5 Hz. Just as in the single-rate design, the direct feedthrough terms were constrained to be zero.
resulting in a 0.02 second computational delay.
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The net result of this two loop configuration is a compensator structure just like the single-rate design

except that the digital processor needs to update one of the digital processor states only every fourth

sample/update period. A block diagram of this compensator along with a diagram of its sampling schedule is

shown in Fig. 3.10. Note that this diagram only illustrates the structure of the compensator - it is not a

,chemauc of how the compensator would be implemented. When actually implemented, this compensator will

use the same number of D/A and A/D converters as the SR compensator, but will require 37% fewer real-time

multiplications per unit time.

The choice of sample/update rates for the slow loop was arbitrary, within the constra)nts of the GMCLS.

Our goal was simply to reduce the number of multiplications required by the compensator without significantly

degrading its performance. The 12.5 Hz sample/update rate was chosen because it is a good compromise

between the total number of multiplications saved by utilizing this muitirate structure and the ratio of the fast to

slow sampling rates. Figure 3.11 shows the percent reduction in the number ot muhiplicauon by using the

MRSLC design over the SR design. There is a decreasing return in computauonal savings as the ratio of the

fast to slow sampling rate increases. In the limit, the compensator degenerates to a first order compensator with

a reduction in multiplications of 50%. Based on Fig. 3.11 we chose a sampling rate rauo of 4.

The state space structure of the compensator which was used for the optimization is

.=(,.,,+,)= ,,,jt==,,...,f+L,LEAcceI(m.n) I (3.3a)
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CS Cmds(m,n) J Csjt£2(m,n)j (3.3b)

CS Cmd(m,n) = CS Cmdf(m,n) + CS Cmds(m,n) (3.3(:)

where zl and z'2are the digitalprocessorstates:TE Accel and LE Accel are the accelerationinputsfrom the

A/D conveners:and CS Cmd isthe command outputtothezero-order-hold,ai,bi,and ciare the freegains

which were opunuzed. The othergainswere constrainedto the valuesshov,n. The structurein Eqn. (3.3)

correspondsto the successiveloop closuresstructureof Fig.3.10. The intermediateoutputsCS Cmpf and

CS Crops wen: added toensurethat Eqn. (3.3)correspondedtoFig.3.10.

3.4.2.3. Multirate with Multiplexed Inputs (MRMI)

The multirate compensator with multiplex inputs was designed to reduce the number of A/D converters

required to implement the SR design. In this design, the compensator state and output updates occur at 50 Hz.

The outputs of the TE and LE accelerometers are sampled at 25 Hz with a 0.02 second delay between the

sampling of the TE accelerometer output and the LE accelerometer output. Thus, the MRMI requires only one

A/D converter to sample both accelerometer outputs because it can be muitinlexed between the two signals. In

addition, the digital processor gains for the MRMI compensator are periodic _iy time-varying. One set of gains

is used when the TE accelerometer output is ,_,,anpled and another set is used when the LE accelerometer output

is sampled. Just as in the single-rate design, the direct feedthrough terms were constrained to be zero, resulting

in a 0.02 second computauonal delay. This compensator requires the same number of multipiicauons per unit

time as the SR design but it uses only one D/A converter. Figure 3.12 shows a block diagram of the MRMI
compensator.

The state space structure of the MRMI compensator is

[2(m'n + l)J= Lal(n) I + .a2(n)J[_2(m,n)J 6n(n)JLLE Accel(m,n_J (3An)

CSCmd(m,n)=[Cl(n) . ,,[Zl(m.n)]
c2(n'J_L_.2(m,n,;

(3.4b)

where Z'l and z'2 are the digital processor states: TE Accei and LE Accel are the acceleration inputs from the

A/D converters: and C$ Cmd is the command output to the zero-order-hold, ai(n), bi(n), and ci(n) are the free

gauns which were optimized, These gains are functions of n because they are periodically time-varying, e.g.

ai(n) = ai(n+2) The other gains were constrained to the values shown. The sampling schedule for Eqn. (3.4) is
shown m Fig. 3.12.
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3.4.2.4. Single-Rate Fault Tolerant (SRFT)

The single-rate fault tolerant compensator was designed to highlight the multiple plant capability of our

synthesis algorithm. This compensator is fourth order with a sample/update rate of 200 Hz and a 0.005 second

computational delay. A block diagram of the compensator and its corresponding sampling schedule are shown

in Fig. 3.13. The state space representations of the SRFT compensator is similar to the 2nd order single-rate

compensator with the exception that the digital processor is fourth order.

The SRFT compensator is fault tolerant in the sense that it stabilizes al, (he plant conditions even with one

of the accelerometers disconnected. To achieve fault tolerance for all 24 plant conditions, we optimized the

compensator for 22 simultaneous plant conditions - as opposed to just six for the preceding designs. These

include the six operating points used in the previous designs evaluated at three cases each: 1) both TE and LE

sensors active; 2) only the TE sensor active; and 3) only the LE sensor active. In addition to those 18, we

added four more operating points at mach 0.50 evaluated for the case where only the LE sensor is active. These

operating points are grayed in Table 3.2.

3.4.3. Designing a Stabilizing Compensator

We used the synthesis ,,_gorithm presented in Section 2.4 to opumize the gains of the four compensators

discussed in Section 3.4.2. The algorithm requires an initial guess for the compensator's digital processor gains

for which the closed-loop system, the BACT wing and compensator, is stable. The difficulty in finding these

gains is that the closed-loop system must be stable at all operating points used in the optimization.

To get a stabilizing guess for the wing at all operating points we used a boot-strapping techmque. First we

found values of the processor gains which stabilized the BACT wing at one operating point. Then we optimized

the gains for the wing at that on e operating point using large values for the plant disturbance noise and sensor

noise intensities. The, large value of noise intensities introduced uncertainty into tho plant. Consequently. the

resulting compensator was more robust than a compensator optimized for a plant with no noise. This new set of

processor gains always stabilized the wing at the original operating point plus at least one other operatnng point.

We then used the new processor gains as the initial guess to the problem with the wing at two qor more)

operating points. The procedure was continued unu_ the compensator stabilized the plant at all the operatnng

ponnts and the problem could be solved using reanstic noise intensities.

Before beginning the bootstrapping procedure we needed to find a set of processor giuns which stabilized

the closed-loop system for at least one operating point. This was straightforward for the SR and MRSLC

compensators. We designed a first order single-rate compensator with pitch acceleration input, CS command

output and a sampling rate of 50 Hz. Recall from Section 3.2.2 that pitch acceleration is essentially the

difference in the TE and LE accelerations. The pole location and gain value of this compensator were found

usnng root locus. The initial stabilizing guess for the SR design con.:lsted of this first order compensator tn

parallel with an arbitrary first ordec compensator that had an input/output gmn of zero. For the MRSLC system,
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we used the first order compensator as an initial guess for the fast loop of the successive loop closures structure,

and an arbitrary first order compensator, with an input/output gain of zero, for the slow loop.

An initial g-,ess for the MRMI processor gains was more difficult to find than for the SR and MRSLC

compensators. Due to its complex sampling schedule we could not design an initial guess by traditional

methods. Instead, we designed a compensator with the multiplexed structure but with very small gains. Then

we used the bootstrapping technique, beginning with the BACT wing operating at a low dynamic pressure

where it is open-loop stable. Since the compensator gains were very small, they did not destabilize the wing

and could _e used as an initial guess. The bootstrapping process for this compensator took several iterations,

verses one or two for the other compensators, because we began with such a poor initial guess.

To obtain an initial guess for the SRFT processor gains we began by designing two 2nd order

compensators. One stabilized the plant when the LE sensor was disconnected, the other stabilized the plant

when the TE was disconnected. We then combined these two compensators into a single 4 th order design and

adjusted their gains until the new fourth order compensator stabilized the plant when both sensors were active or

when only one or the other was active. Finally this design was used in the bootstrapping procedure discussed

earlier to obtain a single fourth order compensator which stabilized the wing at all operating points.

3.4.4, Optimizing the Digital Processor Gains

We optimized the digital processor gains of the three compensators with the algorithm discussed in
Section 2.4. The optimization used the following parameters:

Plant Conditions: Six simultaneous operating points for the second order designs; 22

simultaneous operating points for the fourth order design. See Table 3.2 and
Section 3.4.2.4

Cost Function Weights: The second order designs used the cost function weights listed in Table 3.2.

The fourth order design used the weights in Table 3.2 for cases where both

the TE and LE sensors were active, and one-tenth those values for cases
where either sensor was inactive

Process Noise PSD value: 36 in2/sec 2. this is the intensity of the white noise input to the D_den filter

and was specified by NASA

Sensor Noise PSD value: 0 rad2/sec 4 for initial designs, 240 rad2/sec 4 for final designs. This is

discrete sensor noise for the TE and LE acceleration measurements

Initial Stabilizing Gains: Obtained using root locus and boc' strapping, see Section 3.4.3

Compensator Structure: See equations (3.2)-(3.4)

Sampling Schedule: See Figures 3.9, 3.10, 3.12 and 3.13.

Gain Constraints: In all designs the direct feed through terms were constr _ined to be zero.

Additional gain :onstraints for each compensator are specified in
Section 3.4.2.

The M-Files which define the above input parameters for the synthesis software presented in Attachment 4 are
documented in Appendix g

3.4..5. Desip Iteration Based on Performance and Robustness Analysis

After synthesizing the nlultirate compensators we evaluated their performance and robustness using the

methods discussed in Secuon 2.5. One of the robustness measures was the maximum singular value of the

minimum destabihzing multiplicative uncertmnty at the compensator inputs (a structured singular value). When

we synthesized the compensators u:.ing a sensor noise covariance intensity of zero, the size of the destabilizing

--t. ..........



28

gain was unacceptably small - less than 0.20 for the BACT wing at some operating points. NASA had specified

a value of 0.75. To improve the robustness at the compensator input we increased the sensor noise intensity to

240 rad2/sec 4 and re-optimized the processor gains. This procedure was motivated by the Loop Transfer

Recover technique for LQG systems described in [Doyle & Stein 1981]. The results of increasing the sensor

noise are discussed in the following Section.

3.5. DESIGN R ESULTS

We designed four compensators using the approach discussed in the previous sections. For review, the four

are the:

I) Single-Rate 2 nd Oroer (SR)

2) Multirate 2 nd Order Successive Loop Closures (MRSLC)

3) Multirate 2 nd Order Multiplexed Input (MRMI)

4) Single-Rate Fault Tolerant (SRF13

The structure of each of these compensators was discussed in Section 3.4.2. Optimum values for the digital

processor gains are given in Appendix A.

We looked at five performance and robustness measures:

1) Cost function value

2) Gust pulse response

3) Maximum RMS gain from disturbance to the control surface deflection and deflection rate

4) Gain and phase margins at the compensator output

5) The maximum singular value of the minimum destabilizing muitiplicative uncertainty at the

compensator input

Results are presented for three operating points, mach 0.50 132 psf, roach 0.70 146 psf, and much 0.7R

151 psf. Each of these operating points is 5 psf above the critical flutter dynami_ pressure for the corresponding

roach number, and so the BACT wing is nominally unstable at each of these operating points. It is important to

note tha" none of these operating points were used for the compensator optimization. Therefore the

compensators were not tuned to these particular operating points. In general, the performance and robustness of

the compensators at these three operating points is indicative of their performance at the remaining 21 operating

points.

3.5.1. Cost Function Value

One measure of the overall steady-state performance _f a compensator is the value of the cost function in

Eqn (3.1) at the optimum value of the digital processor gains. (A value for the cost function is returned by our

synthesis algorithm at the completion of the optimization.) For our 2nd order destgns, a "perfect" compensator

would have a cost function value of 6, assuming no sensor noise. The "perfect" fault tolerant design would

have a cost of 7.6 since it optimizes a different cost function. By "perfect" compensators we mean continuous

LQR designs with gain scheduling, i.e.. they use a different set of feedback gmns at every operating point. We

expect the costs associated with our compensators to be higher since they used discrete sampling, did not use

gain scheduling, and had fictitious sensor noise.

It is more realistic to compare the cost of our compensators to that of a discrete LQG design with fictitious

sensor noise and gain scheduling. This comparison eliminates some of the differences due to sampling and

fictitious sensor noise. The cost associated with the discrete LQG compensator ts the lowest cost we can expect
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for a given sampling rate and sensor noise level. Table 3.3 summarizes the values of the cost function for the

discrete LQG and for our four designs. The costs associated with our second order compensators are almost

twice that of the discrete LQG design. This is not surprising since the discrete LQG is significantly more
complex - it is a 16 th order compensator with ga,n scheduling.

3.5.2. The Gust Pulse Response

The gust pulse response provides an indication of the transient response of the closed-loop system due to a

disturbance input. The gust pulse response was found by simulating the response of the BACT wing in

feedback with the flutter suppression system to a disturbance input pulse with an amplitude of 10 in/sec and a

duration of 0004 seconds. This simulation was performed using the M-file mrlim descnbed in Attachment 4.

Figures 3.14-3.16 show the response of the BACT wing at roach 0.70 and 146 psf to the specified

disturbance gust pulse. Also shown is the response of the wing with a continuous LQ regulator. The cost

function weights for this LQ regulator design satisfy the same design criterion as was used to optimize the

compensator's gains. ISee Section 3.4.1.) We provided response plots for only one operating point. The gust
pulse responses at other operating points are similar to those provided in Figs. 3.14-3.16.

For comparison we also provided a gust pulse response plot for the 2 nd order compensators synthesized

without fictitious sensor noise. Recall that fictitious noise was added to the sensors in order to improve the

robustness at the compensator input. Figure 3.17 shows the pitch response of the BACT wing at roach 0.70 and

146 psf clue to a gust pulse disturbance. The primary effect of adding sensor noise is to decrease the damping

of the pitch and plunge modes. The reduction in damping is more prevalent in the pitch response than in the
plunge response.

The gust pulse response plots are shown below.

........ Sirl(jlil-R Iltl

.......... Mul_lrete w/MulhlOlexlo lnDull ]
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I t t t I
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Figure 3.14. Plunge gust pulse response at roach 0.70 146 psf
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3.5.3. RMIS Gsim for Control Surface Deflection and Deflection Rate

One of NASA's specxfications was ,_ .nit on the steady-state covanance of the control surface deflection

and deflection rate for a 1 in/sec RMS whnte nmse disturbance. Our closed-loop system consists of a continuous

plant and a discrete compensator. Therefore these steady-state covanances are periodically time-varymg. In

Fig. 3. i 8 we show the steady-state covariance propagation for the BACT wing in feedback with the three

compensators at an operating point of much 0.'/0 and 146 psf for a unity RMS white noise disturbance.

We calculated the values of the steady-state covariance at the sample/update times using the method

described in Section 2.5.4. Between the sample/update times of the compensator, the covanances were

propagated using the dynanucs of the open-loop continuous BACT wing. The steady-state covanances are only

shown for one BTP of the compensator - they repeat themselves during every BTP of the compensator.

One meaningful interpretation of NASA's specification would be to look at the peak steady-state

_:ovanance value taken from this covanance plot. This value, though. Is an upper limit on the closed-loop gain

for a wr.te noise disturbance and is not an accurate indicator of the control activity level. A better measure of
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control activity would be the maximum RMS gain calculated using Eqn. 2.25. This is an exact measure of the

maximum RMS gain tbr any non-decaying input signal.

In order to apply Eqn. (2.25), which is for a discrete system, to our mixed continuous/discrete system we

created a new discrete muitirate system in which the continuous inputs and outputs of interest are sampled very

last (see Section 2.5:3). We chose a sampling rate for the CS deflection and deflection rate of 1000 Hz. This is

more than twenty times the control surface actuator rolloif frequency. A block diagram of this new discrete-

time system, with the single-rate compensator of Eqn. (3.2), is shown in Fig. 3.19 along with its sampling

schedule. This new system is now multirate even though the compensator is single-rate. The ETIS for this

system has a sample/update rate of 1000 Hz and an N of 20.

We used this new ETIS system to calculate the maximum RMS gain of the original system between the

disturbance and the CS deflection and between the disturbance and the CS deflection rate. The maximum RMS

galas for the BACT wing at three operating points are summarized in Table 3.3. See also the related work of
[Sivashankar & Khargonekar 19911.

3..5.4. Gain and Phase Margins at the Compensator Output

Gain and phase margins were calculated at the compensator output using the ETIS and a multiloop Nyquist

diagram. The ETIS of the plant and compensator were computed independently and then combined in series to

form an ETIS loop transfer function. Gain and phase margins were subsequemly measured directly off the

multiloop Nyquist plot of this function. These are traditional gain and phase margins, and assume that the gain

and phase do not vary simultaneously. The details of this technique are given in Section 2.5.1, [Mason 1992],
and [Mason & Berg 1992] (Attachment 2).

The gain and phase margins for the BACT wing at three operating points are presented in Table 3.3. These

values are typical of the margins at all 24 operating points, although the margins tend to be better at lower

dynamic pressures and slightly worse at higher dynamic pressures. A representative Nyquist diagram is shown

in Fig. 3.20. This particular Nyquist plot has two encirclements of the -1 point Lecause the open-loop plant has
two unstable poles.
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Figure 3.21. Uncertainty Model
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Figure 3.22 ETIS uncertainty output feedback model

3.$.$. Robustne_ at the Compensator Input

The uncertainty at the compensator input was assumed to be a multiplicative perturbation of the form

_hown in Fig. 3.21. where k I and k2 are complex gams. We transformed this system into the output feedback

form traditionally used in robustness analysis using simple block diagram algebra. However, when the

compensator is multirate we must use the ETI$ of the plant, compensator and uncertainty. A block diagram of

this closed-loop ETIS for the multirate flutter suppression system is shown in Fig. 3.22. GE is the loop transfer
function consisting of the compensator and plant ETIS transfer functions connected in series.

Now, given the system in the form shown in Fig. 3.22, we can calculate an exact value for the size of the

smallest destabilizing perturbation [Doyle 1982]. First rewrite AE in Fig. 3.22 as

AE= il kl + 12k2 (3.5)

where !1 = diag{ 1 0 ! O ... i O} with 2N diagonal elements, and where 12 has a similar form. Then it can be
shown that

(: I{ 1 1/-'O(A_ua)= s pmaxp it+l,e 20 HE(eJ¢) tbrO<#ggandO<O_;2_: ¢3.6)

where G(Arnln) represents the maximum magnitude of the smallest destabilizing k I or k2: p is the spectral
radius: and HE(Z N) = (I -GE (zN))-IGE (zN).

We are guaranteed that the system in Fig. 3.21 will remain stable as long as

I _' 0 ] < O'(Anun ) (3.7)O 0 k2

We are also guaranteed that when Eqn. 13.7) is violated, there exist values of kl and k 2 that destabilize the
system ,n Fig. 3.21.

Equation 13.6) ts straightforward to solve with a two dimensional search in • and 0. The results are given

in Table 3.3. For comparison, the corresponding results for the design without the fictitious sensor noise are

also given in Table 3.3 Notice that the addition of the fictitious noise increases the maximum singular value of
the smallest destabilizing uncertainty by as much as 00%.

Even with the fictitious sensor noise, the robustness at the compensator inputs does not meet NASA's

_pectfication for a maximum singular value (ff 0.75. We could have improved the robustness at the
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compensator output further by increasing the fictitious sensor noise level, but we chose not to do so because this

simultaneously reduces the gain and phase margins at the compensator output.

3.6. CONCLUSIONS

The performance and robustness of the three 2 nd order compensators are nearly identical. All three

stabilize the BACT wing at all 24 plant conditions and. with the exception of the robustness at the compensator

input, satisfy all of NASA's specifications. From this perspective there is little reason to use the muitirate
designs over the single-rate design.

The real advantage of the multirate designs is that they allow the engineer to trade design simplicity for

reductions in real-time computations or a reduction in hardware. The successive loop closures design trades a

reduction in the number of computations tbr a more complex digital processor program. The multiplexed design

trades one A/D convener for multiplexing hardware and a more complex digital processor program. Depending
on the costs of the hardware, such _rades might be very advantageous.

The 4 th order fault tolerant design, on the other hand, does not satisfy NASA robustness specifications.

The compensator does, however, meet the robustness specifications to which it was designed. It stabilizes the

BACT wing at all 24 operating point even if one of the accelerometers fails. This type of robustness - to a very

specific perturbation - would be difficult to achieve using more common robustness improvement techniques

such as Loop Transfer Recovery. but was straightforward to achieve using the multiple plant condition
capability of our synthesis algorithm.



4. CONCLUSIONS AND RECOMMENDATIONS

4.1. CONCLUSIONS

The principle advantage of multirate control is that it gives the designer freedom to choose a sampling

schedule which best utilizes the available hardware and software. In the flutter suppression system design, for

example, we developed multirate controllers that provide performance comparable to a single-rate design, yet

require either fewer real time multiplications per unit time to implement or require fewer A/D converters.

The disadvantage of muitirate control is that this additional flexibility substantially increases the

complexity of design and analysis over the single-rate case. Undoubtedly, the lack of good design and analysis

tools has discouraged many from applying multirate control even when the situation may be ideal for a muRirate

design.

In this report we addressed the difficulty of muitirate design and analysis by presenting a multirate design

methodology. The methodology specifies a design approach and provides specific tools necessary to apply the

approach to a practical problem. The tools are tor modeling a muitirate system, for synthesizing a multirate

compensator which is robust to plant perturbations, and for analyzing the performance and robustness of a

multirate system. The resulting methodology is powerful and straightforward to apply

To demonstrate the methodology we applied it to design several multirate compensators for NASA's

BACT wing. Those compensators satisfy the specified design specifications and illustrate some of the benefits
of multirate control.

4.2. RECOMMENDATIONS FOR FUTURE RESEARCH

1) Our synthesis algorithm currently requires a stabilizing initial guess for the digital processor gains.

Obtaining a stabilizing initial guess for those gains can be difficult, especially when the multiple plant

conditions capability of the algorithm is used, because the initial guess must stabilize all plant

conditions simultaneously. Eliminating this requirement would substantially improve the algorithm's
versatility.

21 The singular value analysis of muitirate systems leads directly to a structured singular value problem

with repeated blocks. Calculating an exact solution to this problem is difficult for all but the simple

tow parameter case. This is an area which needs further research.
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APPENDIX A. DESIGN RESULTS

Following are the state space matrices for the optimized flutter suppression system digital processors
discussed in Section 3.0.

A.I. SINGLE-RATE 2Na ORDER

STI_--BTP--0.02 sec: N=i. See Section 3.4.2.1 for a description of the sampling schedule.

_,"+'.°'J= ,.-6d_.m.o,J+L,-o._,_O,jL,._,,_o,,,,,.o,j

A.2. MULTIRATE SUCCESSIVE LOOP CLOSURES

STP--0.02 sec: BTP=0.08 sec; N=4. See Section 3.4.2.2 for a description of the sampling schedule.

Update during first STP of the BTP:

[ _.fo,,,,)]=[o.7_73 o lr_,-(.,.o)1r -,_,(m+LO)J --0.47672JL_,(m.o)J+[_,0--4

cs ¢md,,,.O)=10"-"[2.35354-2.5338][_:(m'0)1
L:,(m.o)J

Update during second STP of the BTP:

o.376441FTEAccel(m.0)1
O.53_IJLLE Accel( m. o)j

LTEEAccel(m, 1)t_t(m,2)=O.75673=_rfm, l)+[-I 0.37644] Accei(m, l)J

CS Cmd(m,l)= lO-4[-2.5338 2.35354][;"1 (re'l)]
L_,(,,,.o)J

Update during third STP of the BTP:

.FTE Accel(m,2)]:/(m,3)=O.75673_:(m.2)+[-i 0.37644ILL E Accel(m.2)

CS Cmd(m. 2)= 10-4[-2.5338 2.353541r_f (m'2)]

'L_',(m.o)J
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Update during fourth STP of the BTP:

Accel(m,3)J

csCmd(m,3)=I0- t-2.53382.353 1[":
L_,(,,,,o)J

We assumed thatz-sisupdatedduringthefirstSTP oftheBTP, but ititcan be updatedduringany STP of
the BTP.

A.3. MULTIRATE MULTIPLEXED IN1Krr

STP=0.02 sec: BTP--0.04 sec: N=2. See Section 3.4.2.3 for a description of the sampling schedule

Update during first STP of the BTP: Only the TE Accelerometer is sampled. The LE Accel value is held
from the previous STP.

[_I (m'l)] r 0 ! lrzl(m,o) 1 [--i.3322
._2(,.,l)j=L-O.147120.88072JL_2,,,.o)J+L._o.75421

CS Cmd(m,0)= 10-518.6277 -8. 7583]rsl(m'°)]
L-*2(m,o)J

186.76][ TE Accei(m,0)
! 36.42 JLLE Accel( m - 1,1 )]

Update during second STP of the BTP: Only the LE Accelerometer is sampled.The TE Accel value is held
fiom the previous STP.

[=,,,,,,,o,]r o , ['-2.5371

_2(m * 1,0)J = L-2.33o4 3.7275 Jk_2{m, i)J + [_o. 28724

CS Cmd(m,l) = '0-413.7645-4.691O(_:ff_'ll')J

- 189.04JL LE Accell m. I).]
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A.4. SINGLE-IO_TE FAULT TOLERA_wr

STP--0.005sec;BTP=0.005 sec:N= I. See Section3.4.2.4fora descriptionofthesamplingschedule.

"_:_m+i.0)][ 0

_2(m+ 1.0)[ = 0

_'dm+ 1.0)[ 0
_4(m+l.O)j -0.48177

CSCmd(m,O)=[l 0 0

I 0

0 I

0 0

2.4151 --4.3750

[ 4.2073

+10-5 -0.06264

-2.1575

L-3.1ooo

[._,_.,.o,]
./_2(m.O)/

Ollz'3 (m,O) I

L_4(m.O)J

0 ][_l(m,O)

0 /|_2 (re.O)

1 /[ _3(m.O;
3.4415JL_4(m,O)

6.4437]

I. 38231rTE Accel(/, 0) ]

-I. 13931LLE Accel(m, 0).[
-2.3865]

t-: •
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APPENDIX B. M-FILES USED TO DEFINE THE FLUTTEk

SUPPRESSION SYSTEM SYNTHESIS PROBLEM

B.I. PAPA ABCD

Forngu: [am, Ixn, cnL din, vm ]=PAPAabcd (fnmne, roilefl', form)

Description: Creates state space matrices defining the PAPA wing at operating point specified in fname such
that

.i" ----amx + bmu

y = crux + dmu

w_v=

r'plunge
pitch
plunge rate
pitch rate
TE accelerometer
LE accelerometer

command to actuator
CS control surface

CS control surface rate
CS control surface accei
mode 1
mode 2
mode 3
mode 4

CS corn.land }and u = Dryden filter input

Inputs:

Outputs:

fnmae text variable containing the name of the operating point of interest, e.g. 'freon_m5_q75'.
fname must have the same name as the file which contains the data

roUoff frequency in rad/s:c of first order anti-aliasing roll-off at the sensors. The filter has the
form

roUeff
Yfiltered - S + rolloff )'unfiltered

form indicates the desired form

if form = 0 : am. bin, an, dm is unchanged fro m original data

I : am, bin, an. dm is block diagonal

2 : am. bin, an. dm is block diagonal with scaled states and outputs

am, bin, rm, tim state space description of the plant

vm transformation matrix used to obtain modal form
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B.2.

Format:

Description:

hlputs :

Outputs:

B.3.

Format:

Description:

Inputs:

Outputs:

FSSCOMP

'mrmi'

'srl_

cmp, sz, su, sy, stp, stppbtp
See Attachment 4.

[cmp, sz, su, sy, sip, stppbtp l= FSScomp(_jq3e)

Generates the digital processor gain matrices and sampling schedule description for the four
compensator described in Section 3.

ctyll_ specifies the desired compensator

if ctypr= "sr' then FSScmp returns a description of the 2nd order Single-Rate design

"mrslc' then FSSemp returns a description of the Muitirate Successive Loop
Closure design

then FSScmp returns a description of the Muitirate w/Multiplexed Input
design

then FSSemp returns a description of the Single-Rate Fault Tolerant
design

a description of the compensator used by the synthesis algorithm.

_laOl'l'_SR OR MRMI

mropt_srORmrmi

Defines the input data for the 2nd order single-rate compensator or muitirate compensator with

multiplexed inputs. The user needs to comment and uncomment three lines to switch between

the SR and the MRMI design. These are indicated in the text of the script.

none

Outputs to global variables used by optimization routine and defined in Section 3.3 of
Attachment 4

BA.

Format:

Description:

Inputs:

Outputs:

MROPT_MRSLC

mrolPt_mrsic

Defines the input data for the muhirate compensator with successive loop closure form.
none

Outputs to global variables used by optimization routine and defined in Section 3.3 of
Attachment 4

B.S.

Format:

Description:

hlputs :

Outputs :

MROPT_SRgr

mropt_srft

Defines the input data for the single-rate fault tolerant compensator.

none

Outputs to global variables used by optimization routine and defined in Section 3.3 of
Attachment 4

D
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REDUCED ORDER MULTIRATE COMPENSATOR SYNTHESIS

A reprint of:

Mason, G.S. and Berg, M.C., "Reduced Order Multirate Compensator Synthesis," AIAA Jour.

Guid. Contr. andDy, namics, Vol 15, No. 3 May-June 1992. pp. 700-706.
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Reduced-Order Muitirate Compensator Syathesis

Gregory S. Mason and Martin C. Berg
Universuy of Washington, Seattle, Washington 98195

A method for symthesixiq reduced.o_ler mallinue ¢on_ton is IX_mlled. Nece-.wry ¢oudltloms for which

the ¢OmllC_mto¢ Nmmeter v_ _ lureinfinite time qm_mU¢ ¢oI flnctlom are derived. An algorithm

for finis 8 compemm|lor Mm_qer v_Ns wktch mti-fy IN Ncm_r7 ¢ouliliom is described. This algorithm is
tbeu used to desiSu several tf_ posltlo8 controllers for 8 two-llmk robot 85.

Introduction

N many cases, a multirate compensator can provide better
performance than a single-rate compensator requiring the

same number of real-time computations. Berg, for example,
was able to reduce the steady-state rms response of states and
_omrols to a disturbance for a simple mass-spnns-mass system
nearly 20% by using a multirate compensator over a single-rate
compensator. J Numerous other examples have been provided
m the literature by Berg, _-3 Amit, '._ and Yah8. 6 Although
multirate compensators can provide improved performance
over single.rate compensators, they are also, in general, more
complicated to design.

The complexity of multirate compensators stems from the
fact that they are by nature time varying, periodically time
varying for most practical applications. Not only must design.
ers choose multiple sampling/update rates for the compensa-
tot, but they must also determine the parameter values for a
_ime-varyin8 compensator.

One method for designing mu'tirate compensators is multi.
rate linear quadratic Gauuian (LQG).' Multirate LOG is the
multirate equivalent of single-rate LOG and is straightforward
to solve because the equations governing the solution are aim-
dar to those for the single.rate case. Muitirate LOG, however,
results in a full-order compensator which has periodically
time.varyins gains. For many applications full-order, time-
varying compensators are not practical.

A generalized algorithm for multirate synthesis (GAMS)*
was developed by Yan$ to overcome many of the shortcomings

of multirate LOG. Yang's algorithm can synthesize reduced.
order multirat¢ compensators with or wnthout time-varYm8
gains by using a numerical gradient-type search to find opti-
mum compensator parameter values. His algorithm uses a
finite time cost function in its problem formulation, unlike
muitirate and single-rate LOG which use an infinite time cost
function. By using a finite time cost func,on, Yang's al8o-
rithm eliminates the numerical problem that arises when a
destabilizing compensator is encountered durmg the numerical
searcli. Even though Yang's algorithm uses a closed.form ex.
prmsion for the gradient, the calculations necessary to per-
form the gradient-type search are extremely cumbersome.

In this paper, we present a new algorithm for synthesizing
reduced-order multirate compensators with or without time-
varying gains. The algorithm utilizes the compensator strut.
ture of Yang's algorithm, but the problem is formulated using
an infinite time, instead of a finite time, cost function. This
allowsus toderivenecessaryconditionsforwhich themulti-

ratecompensatorminimizesthecostfunction.The equations
forthenecessaryconditionsarefairlys1.'npleand canbesolved
directlyusinga standardnonlinearequationsolver,eliminat.

insmany of thenumericalcomplexitiesof Yang'salgorithm.

C_merml Multimte Compensator
Before deriving the equations governing a reduced-order

multirate compensator, we will first present the structure for a
general muitirate compensator. We restrict our discussion for

Gnqlory S. IdtJaJ wu bum in _lt, WsJ_oa, in 1961. He _'0Jved the 8.S. dqm Im meclumlad

eUllllOeenltq from GOSN88 UalvevWly hi ItJ13 sod tile M.S. _ In Conpuley Istesmted Muuufortu_q from

GeoqlJa lsstHute of Tecbaolos.v in 1904. From 1904 to 1900 be worked in tile robotics Jib e! the Naval UudersJm

Wedsm _q StetJoa iu Keyp445, W_lstoo. Currwtty be is purRiu8 the Ph.D. dqree m morfllical
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now to compensators with time-nnvariant gains and sampling/
update rates whose ratios are rational numbers.

A general muhirate compensator is shown in Fig. 1. Each
input y. output u, and state ,_ is sampled/updated at a rate
_hich. in general, represents the desired bandwidth of the
input or output with which it ts associated. The variable _ is the
xalue of y currently available to the digital processor from the

zero-order hold: while u is the current output from the digital
processor which is held with a zero-order hold to form the
output u. When the sampling/update rates have ratios which

are rational numbers, the sampling/update schedule is period-
ically time varymg. We define the greatest common divisor of

all of the sampling,, update periods as the shortest time period
(ST/:>) and the least common multiple of all of the sampling;
update periods as the basic time period (BTP) (see Fig. 2).

The state equations for the multirate compensator pictured
m Fig. I are

I;l =I -+ °1, 0
,., s.,C s_,b[l-s,,] [l-s_,]

Y* (I)":

u, = [s..+C s..,bll-s, ,I

(2)÷ [s..Ds,.,iy,

where _ is a hold state used to model the sampler and zero-or-

der hold between _ and u. The s,,, s:.,, and s=, are switching
matrices for y, _, and u0 respectively, that model the system's
sampling/update activity at the start of the kth STP. Also.
s. + has the form

where

I

0

r. 0 0 0

0 r. 0 0

50. = : i

0 0 r.,,._, 0 i

0 0 0 r,,,. ,

if thejth """ (_, v or u) is sampled/updated
at the start of the kth STP

ot herb ise

m. = the number of states (,.')

m. = the number of inputs (.v)

m,, = the number of outputs lu)

Zm.DOv_law'Hokl _ D_ll I_mt_

F_g. I A I_meflll mmlgll'lt# eOmmlOf.

Fast .Sam_,nl Scheme

Slow Samplm I Scheme_ urne

"_,'_'e_STP [!
_q'-'-'------- BTP -----_

Fig. 2 EUml_ of • multiflle smmplinl scheme.

"01

A more complete discussion of this compensator structure can
be found in Refs. 6 and 7.

Equations (1) and (2) can be written more compactly as

where

:.,.= =A,Z, * b,.v, I3)

u, = C,=, ÷ D,y, I4)

--Iil.
Equations (3) and (4) form a s,ngle-rate persodlcally time-

varying system with a sampling rate of one STP and a period
of one BTP. If N = BTP/STP, then A, = A,. _, B, = B,. ,,,
C, = C,._., and D, =D,..,.

Even though A,, B,, C,. and D, are periodically time vary-
in$, the muhirate compensator gains. _. [I. C. and D. are time

invariant. The period_c.ty of the muhirate compensator is due
to muhirate sampling/updating, not the compensator gains. In
the remmnder of this section, we will demonstrate how the

time-invariant compensator gains. _l. h. C. and D. can be

separated from the periodic compensator matrices A,, B,, C,.
and D+.

Define the composite compensator matrix as

p, = [D,
C,]

a, A,] (5)L

and factor P+ as follows:

P* = 5,,P52, * S_, 16)

(?)

$_A 0

0 s:,

S,, = 0 0 e8)

S+ , 0

S:,=[S'*O Oi i-S,,o 0]o (9)

0 0 0 I-%,

0 l-s:, 0 0
S). - , (101

s,, 0 l-s,, 0

0 0 0 I-s,,

where

Equal=on 161 0sa key result, h allows us to factor the t=me.

_nvartant compensator gains, the unknown parameters _,e
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will solve for in the next section, out of the time-varying
compensator.

It is important to note the difference between P, and # in
Eq. (6). P, (with a subscript) is a periodically time-varying
matrix defined by Eq. (5). It includ,-s all of the information
about the compensator gains and the sampling/update sched-
ule./Sis a constant matrix which contams only the gains for the
compensator. P, can be written in terms of #and SD,. $2,. and
53, using Eq. (6). S,,, Sz,. and $3, are periodically time-vary-
ing matrices which contain a description of the sampling/up-
date scheme.

Derivation of the Necesszry Conditions

in this section, we will use the results of the previous section
to denve the necessary conditions for the reduced-order multi-
rate compensator. The multirate problem to bc solved is as
follows.

Given:

the discretized plant model

_,+j =_5r, ÷(_G, + _w, (!1)

._, = R_r, + v, (12)

where _. (_. J_. and A are otxr.ined by discretizin8 the mmio8
plant matrices at one STP; w_:and v, arc discrete-time Cans-
siam white noise inputs; _ is t_e control input from the cx_m-
pensator; and ._ is the sampled sensor output.

Find:

themultiratecontrollaw _-,itha prescribeddynamicorderand

samplingschedule,of the form of Eqs. (I)and (2)which
minimizes a quadratic cost function of the foL'm

s=lim,., (.Lu,J L_r O2 u, (13)

where E is the expected value operator, and the summation
from I to H accounts for the fact that the closed.loop system
is periodically time varyin8. A prescribed samplin8 schedule
implies that the values of s_.,. By., and $,., are known.

Usin8 Eqs. (3) and (4). it is easy to see that this problem is
essentially a time-varyin8 feedback problem--a time-invarisnt
plant with Rperiodically time-varYm8 compensator. One thing
thatmakes thisproblemdifficultistha_thecompensatorhas
anexplicitform,thatofEqs.(I)and (2),inwhichonlycertain
parameters,A, h, _',and D, can be adjustedtominimizeJ.
To solvethemultiratecontrolproblem,we castitintoout-

put feedbackform and followt derivationsimilarto Muk.

hopadhyay's for the sinlle rate cLse.8.9Using Eqs. (3) and (4)
and Eqs. (I 1)and (12), we write the output feedback equations

I:::::l.lo olIo.1oJLz,J o Ij LZ,.,)

" 0 v, (14)

0

= "'I|-"I (16)

Equations (14-16)rdmbewrittenmore compscflyas

x,.j -Fx, +Ou, + Wq, (17)

y, -Hx, + V_, (18)

u, -P,y, (19)

It is important to keep in mind that P, in Eq. __) corresponos
to the P, in Eq. iS). a periodically time-varying matrix v'hich
contains all of the information about the muhirate compensa.
tor gains and sampling/update rates.

The closed-loop system is

where

X,.i = F_,X, * G_,,/, (20)

F_, =.F + GP, H (21)

G_, = W + GP, H (22)

The state covariance propagation for this systemobeys

X,. , = Fc, X,F_ + G_,RG_ (23)

where

x. =e[x.x:'], R=E,-

Equations (20-22) represent a periodically time-varying sys-
tem with a period ,_ one BTP. We can generate a single-rate
system by repeated application of Eq. (20) o.,'er one BTP. 'o
The sinf_e-rate system can be written as

where

(24)

F_, - Fa,.N_ ,)Fa, +N- _)F,,.,,- 3)" F., (2._)

X Fr(*._-,,Fe(,+___)'..F_,._)G_,,.,)i " I G¢(*.N=,)]

qb,t = I

_/¢° N- i !

(26)

This sinsle-rate system has exactly the same values for x as
the periodically time-vtryin8, closed.loop systemat each 8TP.
However, the vRlues of x at the intermediate STP are lost
becausex is incremented by N in Eq, (24) hut only by I in
Eq. (20). There are/v suchsinsle-rate systems associated with
Eq. (20). They can be written as

x,._., = F_,.,_x,., . G_,,._q,.,. for_= 1,2,, ,N (27)

IfF_ is stable, then the periodically tlme-varyir_g system
Eq. (20) is st_"le." We can calculate the steady.state covari.
ance for x USml the followm8 Lyapunov equations:

X,., F_,X,F r + G_R_G r, for k = 1,2 .... %" (28)

FR 0 01

0 R 01R.- _ • I

lo o o

Nm¢ that X, i. periodic, that hi it rifles within one 8TP. but
from _7"P to RTP X, - X,. _. _ we have cldcuhltedX, It
any k usinl Eq. (28). we can use Eq. (23) to propqste it over
the _TP, This eliminates the need to solve Eq, 1211)N times.

Now, uSinll Eq_, (2.1) and (13), and the prol_nlm of tin
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trace (Tr) operator, we can write the cost function for the
stabilized systemas (see Refs. 8 and 9)

s=  Tr/[Q, +MP,n +(UP,n),+x

* (P* V)rQ:P* VRI (29)

Adjoin the covariance constraints Eq. (23) to the cost J using
Lagrange multtpliers. A,. to obtain

) = ._Tr [[ Q, + MP, H + (MP.H)T + (p,H)rQ2ptH]X,

* (P, V)rQ:P, VR + AT., [Fr, X,F_. Gc,RG_ - X,. ']1

(30)
with Xk = X_,. i

Necessary :onditions for minimum J are

O.7 _ a2
OX, - O, _A,.j = O, _ = 0 (31)

In addition, 0:[I/01_'_ must be positive definite for a mini-
mum J.

Substituting Eq. (30) into Eq. (31) and replacing P, with
P, = S_,PS2, + S_, from Eq. (6), we obtain

a.7
- 0 = Qt + MP, ari + (MPtH) rOX,

+ (P*H)rQ2P* H + FrA,. IFc, - A, (32)

for k = 1,2 ...... 'Vwith A, =A,+N.

O,'_,---"_= 0 = F_,X,F_ + G_,RG_ - X,. t (33)

for k = 1.2..... _' with X, = X, +N.

#--_ = 0 = 2,=_, St, [[Q= +GrA,.,GJP,[HX, H r+ vRvr ]

"[Mr + GrAt"F]XtHr] Sr (34)

Equations 132-34) are a set of coupled matrix equations.
They make up necessary conditions for #, which is comprised
of the muhirate compensator gain matrices_1, B, C, and D, in
Eqs. ( I ) and (2), to minimize the cost function J. Values of _1,
B, C, and D, found by solvingEqs. (32-34), can besubstituted
into Eqs. ( ! ) and (2), along with the definition of the sampling
schedule,s:,, s,,. and s,,, to form the complete time.vary.
mg multirate compensator.

To ensure that the compensator 8ams satisfying Eqs. (32-
34) mm,mize J. we should also cheek that the Hessian of .)'
with respect to /_ is positive definite. Our present algorithm
does not calculate the Hessian explicitly, but usesan approxl.
mate value calculated by the numerical search algorithm dis.
cussed in the next section.

Equations (32-34) were derived assuming time-invariant
compensator gains. We can easily derive the corresponding
equaz,ons for periodically time.varying gains. Let

A = A,, b = b,, C = C,, O = b, (3S)

with the restriction thai _t.lv =,_,. B,. _v = Bt. C,.v = C,.

and D,. _ = De. Define the comlmtite I_q'iodictdly time-vary.
ing compensator matrix

IP' • h, ,;I. (36)
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Then replace _ with /s, in Eq. (30) and differentiate with
respect to _, to obtain

aJ

=0= vRv,]

_'[Mr+GrAt'tFjX, Hrlsr for k = 1,2..N (37)

Thus, for every new set of compensator gains we obtain one
new equation of the form of Eq. (37).

Equations (32-34) are very similar to the single-rate equa-
tions. In fact, if we set St,. SIt, and ._;3,so that they corre-
spond to a single-rate system, and N = I, we obtain the exact
results derived by Mukhopadhyay ior the single-rate case)

Implementation

To find a reduced-order multirate compensator that mini.
mizes thecost function J. we need to solveEqs. (32-34) for the
compensator gains F_. A flowchart of the algorithm used to
determine the compensator gains is shown in Fig. 3. Using the
prescribed sampling schedule the algorithm first discretizes the
analog plant model, analo8 cost function, and analog process
noise model. (See Ref. 2 for a discussion of the relevant dis-
cretization procedures.) Equations (32-34)are then solved for
the compensator gains using a gradient-type search in Mat-

Discrettl the ImJog plant, weqllam I nutmcesmdImces noulecovmance 1
t

I BIAiid dle mamcel F. G. W. H. V. imd , 1(t4) - 06)

Calcul_ X t .stag (28) then propqtte [

Xl"smll (23) t° °txam X2"X3..... "_ t
i

C._ Av urn41(A.4)men_ 1A s u.uag (A.3) tooIIm AN. !..... AI

i

Cai_ _ tmae (34)

i
Calca_e the step dtmcumt anti lengm t

Calculate the nest lues for the COmlXmUuor :

t,

No _r =0

lqg. 3
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L 2

Parameters: Mass Length

Lt 1.235kg 0.965m
L 2 0.163 kl 0.167 m

Lnpuu: Torque TI lml T2

O_qm_: e and 8

Fil. 4 Plalr lwo-limk robot arm.

8,,.p. ComFemmor]_ TwoLmkAnn

Fil. 5 TLA pilnl/COmlNq,mlor eonflllmllon.

lab.l: We chose a gradient-type search to solve Eqs. (32-34)
because it allows us to easily add constraints on ihe parameters
values--simple equality constraints were used to find the opti-
mized compensators in the next section. The equation_ neces-
gary to solve for the Lagrange multipliers are located in the
Appendix, Eqs. (A3) and (A4). To ensure that the solution
represents a minimum J, the algorithm checksthat the Hessian
of J with respect to the free parameters in P is positive definite
at the solution point.

Because Eqs. <32-34) are not valid when the closed-loop
system is unstable, the algorithm I) must be provided with an
initial stabilizing compensator, and 2) must result in a stabiliz-
,ng compensator at every iteration. From our experience, find-
ing an initial stabilizing compensator is generally not a prob-
lea. Many systems suitable for multirate control can be
stabilized using successive loop closure with minimal cross
coupling between the control loops. A stabilizing muitirate
compensator can then be obtained by discretizinl the individ.
ual continuous control loops at the desired sampling r•les.
When there are no constraints on its structure, a st•bilizing
compensator can also be obtained usinl the boot str•pping
method of Boussard. '3.,' For difficult muitirate control prob.
leas. where a stabilizing compensator cannot be found using
either of the preceeding two methods, one can always use
Yang's algorithm to find a stabilizing compensator and then
s_,,tch to our algorithm to complete the optimi,ation, in our
ex_nence, Yang's algor,thm usually converges to a stabilizing
solution qu,ckly--it is the optimization of the compensator
parameters that _s time consuming.

To avoid the problem of destabilizing compensators during
the iteration process, we included a check in the algorithm
which systematically reduces the step size to ensure that the
+ompensator _s stabilizing. Because the Iradient of the COil
function with respect to the compensator parameters becomes
_ery larle near the stability boundary, the algorithm is always
forced away from • destabilizing solution as long as it never
steps over the stability boundary into sununable region.

Even though our algorithm was programmed as an inter.
preted Matlab M-File we found that it still performed better
•._an Yanl'! algorithm which runs as compiled Fonran. The
_rtmarv difference between the two algortthms is in the com.
plexlty ol the expression lot Ihe lr•dten¢ of J with respecl IO

TaMeI Ssm, llq/ulmlme
mum lw "rLA

7"., Sample/updaterate. s

6 0.223
6 0.028125
7"1 0.225
7"2 0.028125

the compensator parameters. Calculation of the gradient
expression for Yang's problem involves diagonalisation of
the closed-loop system and evaluation of several matrix equa.
lions with nested summations. Compare Eqs. (32-34) with
Eqs. (i 12-115) in Ref. 3 to see the difference in the complexity
of the two gradient expressions.

Two-Link Robot Arm Example

We used a mathematical model of a planar two-link robot
arm (TLA) todemonstrate thecapabilities ofour algorithm.
Thisisthesame model usedby Yang,6and sowe wereableto
verifyourresultsbydirectcomparison.A diagramoftheTLA
isshown inFig.4.

The goalof our designwas tocontrolthetipposition6 of

thearm viaa multiratecompensator,We used thefollowing
analog cost function and process noise covariance matrices
from Ref. 6.

Io:0 0
J = limE._x r | 0 0 0 1-i o,,,o.0 0 0

o 10.69444 u (38)

where

X IB

L+j

,++.,,.[0.+_o]0 0.01 (39)

We assumed perfect measurement and thal plant dislur.
bances enter the system coincident with the contPol torques.
The sampling/update ratesare given in Table I.

Five difference compensators were designed: an a,alog
LOR, a muitirate lead/lead, an optimized muhirate lead/Iced,
an optimized multirate general second order, and an optimized
single.rate general second order. We useda smooth step input
to 6,,f and 0,,_defined as follows:

6._(z) = i0[.005 I - cos m, z s T_

_0.00l m, z • T,

'_.+dt )
e,,d t ) = --

L,+Lz ' Tr = 0.125 i

(40)
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and the servo configuration shown in Fig. 5 to measure the

Performance of the different comPensators. The response of
the TLA for the five compensators is shown in Figs. 6a-6c.

The analog LQR compensator used full state feedback. We

provided this comPensator as an example of the response pos.
sible using the cost function weighting matrices of Eq. (38).

The muhirate lead/lead was found using success/ve loop
closures. We designed the control loops in the discrete domain
so that the eigenvalues of the closed-loop system matched
those we obtained using LQR transformed to discrete time.

This comPensator consists of two simple lead loops: one from
to Tz oPerating at the fastsampling/update rate,and one

from _ to T, oPerating at the slow sampling/update rate.

The finalthree comPensators were synthesizedusing our

new algorithm and the cost-weighting matrnces us_l to design
the analog LQR comPensator. The optimized multirate lead/
lead was found by optimizing the pole/zero locations _nd

gains of the lead/lead comPensator found by successtve loop
closures.

The optimized muhirate general second-order comp_itsaror
uses the same sampiing/ulxlate scheme as the lead/lead com-
Pensators but has the comPensator structure of Eq. (41), where
a,s, b,_, £,_, and d,_ are the parameters which were optimized.
This comPensator has the maximum number of indePendent
free parameters possible for a second-order system/

-' ?1o}. [.,
Lea, q2J Ld,, d.J (41)

The optimized single-rate general second-order compensa-
tor is a single-rate equivalent of the multirate general second-
order compensator. It has the same structure as the multirate

general second-order compensator, Eq. (41), but uses a single
sampling rate. This sampling rate was chosen such that the
number of computations required to implement either the mul-
tlrate or single-rate compensators during real-time operation
are the same.

Our results are the same as those obtained using Yang's
algorithm. They demonstrate how muitirate comPensators can

provide better performance than single-rate competnsators by
trading lower bandwidth control of the slow modes for higher
bandwidth control of the fast modes. In this example, we were
able to reduce the tip response overshoot 40We and the peak
control torque 2_% by using a multirate controller over a
single-rate controller.

Conclusions

In this paPer, we have presented a new algorithm for synthe-
sizing reduced-order multirate comPensators, it can be used to
design comPensators of arbitrary structure and dynamic order,
with indePendent sampling/update rates for the compensator
inputs, outputs, and states. This algorithm provides the ver-

satility of Yan$'s algorithm without the numerical complexi.
lies associated with the finite time cost functior,.

Finally, we do not want to discount Yang's algorithm alto-
gether because, while our algorithm requires an initial stabiliz.
ing compensator, Yang's does not. For those problems where
finding an initial stabilizing compensator is difficult, we can
always use Yanl's algorithm to find a stabilizing compensator
and then quickly optimize the compensator parameter values
with our algorithm.

#,ppetm_
Given a P, which stabilizes the muitirlte system, we can

calculate the steady.state values of A, where A, is defined by
Eq. (32) rewritten here as Eq. (AlL

0 = O, + MP.M * (MP, H)r + cp, H)rO_p.H

+ F_ /h_. ,F.. - A, (AI)
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for k = 1.2 ...... 'V with ,%, = ,%,.,,.

First snmplify Eq. (Ai) by defining

Q3" Mr Q2 ' J,u F,H (A21

,_here / is an identity matrix. Then Eq. (AI) can be written as

.x, = J[O_], + F_ A,.,F. (A3)

for k = 1.2 ..... N with A, =,%t._,.

Equation IA3) represents a periodically time-varying Lya-

puno_ equation. We can create an equivalent single-rate sys-

tem b_ repeated application of Eq. (:,3).

TA, = J_@J_, _ F;, A,F_, (A4)

!or /_ = 1.2... ,.'V with .%, = A,..,,.

Fo, = Fc,,...__ ._F_,,. N-2_F._ ._- 3_'" F_, (AS)

J_,.__,,F,_,. N-2,F.,.N_ 3, Y. ]
/

IY_,-N-2,F_-,,.N-3_-.-F, I
J_*= I (A6)

"Q3 o 0 ]
I

o O, o I
_|

0 0 0 Qsj

Equation (A4) .is a time-invariant Lyapunov equation which

can be solved for A,. Once any A, has been found, the propa-

gation Eq (A3) can be used to find the remaining A,.
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Introduction

N ._  ous .pp hesave to yze
tqt aim roousmcss of multirate systems. Most notable is the

work of Thompson? Thompson and Dalley.Z Meyer and Burrus.3
and Khargonekat et ai." References | and 2 analyzed the gain and

phase margins of a mulm'ate system using an approach base,t on
Kranc vector swRch decomposluon. Meyer and Burrus stoc_.ed the

stability of mulurate systems and their frequency domain responses
by applying the concept of block pronessmg to muitirate systems.

Khargonekar et al. analyzed the robusmess of periodic compensa-
tors, a super set of muhirate compensators, using isomorphgsms.

Although these approaches seem quite diverse, fundamenulUy
they ate very similar. These three appcoacims, along with most mul-
urate analysis techniques, use a nmformatiou, such as Kxm_ vec-

tors or block processing,to convert the multiratesystem intoan

equivalent single-rate system which can he analyzed with estab-
lished single-rate techniques. The smgle-rau_ results are then used to

characterize the stability and robustness of the onguud muinrate
system.

In this paper we compile the important muitirate analysis results

from Refs. 1-6 and present them m a unifying state-spece formula-
lion. In addition, we provide some new results that clarify the rela-
tlouship between a mulurate system and its single-rate equivalent.
Finally. we apply all of these results to a pracucal example: a mulu-

rate flutter suppression system designed for a model wang.

Summary of Multirate Analysis Tools

In this secuon we summarize some impommt and useful multi-

rate robustness analysis results. These results are applicable to mul-
tmue systems that ate linear, causal, finite-dimensional, and whose

sample/update/delay activities are periodic and synchronized to a
common clock.

RmlU I

A multirate system can he modeled as an equivalent single-rate
system (ESRS). Modeling a multu'ate system as an EgRS is funda-
mental to multirate robustness analysis. The ESRS allows one m

mmupulate and analyze a mulurate system as if it were single rate.
Using the ESRS. single-rate lind muitirate systems can be combined
m senes or m feedback loops just as m classical conlrol. + lr has also
been shown that • sm_le-rate/muh,rate system will be stable when-
ever its ESRS is stable."

Rece,ved July 29. Iqgl: presenmdas Paper 91-2812 at the AIAA Guid.
ml_,_.NIivlsauofl. L_I Comlol Confl_mn_. New Orlam. LA. Ault. 12-14.
1991: nevlsm neceJvedOct. 22. 1992: aCCel_d for puMlcatton Oct. 22.
1992. Copyrllh t _ 1991 by tile Ame,nclm kamtum ol AemoauUcs and As-
tmmmncs. Inc. All nlthts reserved.

"Post Doclonfl Researcher.Mechamcal Enemeennl DeDsnrnent
• _$_lSla/lt _r_Ter_,,_ff, _,|('chanl_al |:n_lneerm_ L._t_3rlmen! ',lemner

,J, IAA
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The ESRS of a multirate system can be ob_ned by meddi_
the mu,tixase sysmm as a periodically time-varymg systm_u and
uransforming the periodically ume-varymg system into an ESRS. s
The state-space rqxesenmuon of the ESRS is

where

xlm-r !. O) = Atxlm. O)+B_.u_ Ira. 0)

y_ _m. O) = C_x(m. O) + D_u__ _m. O}

(,a)

(lb)

y(m.O) 7 _,
l u(m,O)!

Yt(m.O) = y(m.l) u_.(m,O) = u(m.,) [ (2)
: i :

_(m.N- !) I_(m,N- ,)j

form = 0. ,.2 ..... andn = 0. 1.2 ..... N-i.

In these equauons, u(m, n) and y(m, n) representthe values of

the input and output, respectively, of the original multirate system
at the (mN+n)th sampling instant. The integer N is the nmo of the

least common multiple of all of the multirate system's sample/
upclaleddelay penods to their greatest common divisor. The sub-
script E denotes vectorsand matrices smcfly associated with the
ESRS.

A key feature of an ESRS is that ILs Inpu'Joatput vectorsare

COl_posite V_totS conuumng the lnpuUoutput values of the mul)i-

rate system at N separate sampling times. Consequently, an F.,SRS

is always multiple input, multiple output <MIMO) even if the orig-
inal multumte system is single input, single OUtpUt ($|SO).

key feature is that an ESRS always has a nonzero direct feed
through term Dp This is because D_ couuuns infmmmion about
how past inputs affect the current output. For systems with no

dynamics, the direct feed through term D_ is block diagonal. For
example, the ESRS of a comumt uncertam_ rrmmx A is

A_ = block diag[A. A ..... AJ (3_

with N blocks.

Refer to Refs 3.6. 8. and 9 for the details on modeling t multi.
rate system as an ESRS.

Remit 2

A discrete signal _m. n_ is related to its F..SRS SlLmal we4m, O)
as follows:

w(m. n)'={Wv(n) Wv(n- I ). • • Wv(n-N + I )Jwl4m. O)

where W.dn)zs a switching function delined as

,.. i

,4al
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-o that

tV_k) = i ilk = --ran form = 0. I....

= 0 otherwise (4b)

Result 2 provides a convenient mathematical connection
between the mpuUoutput vectors of a muhlrate system and its

ESRS. The Turin of W v given in Eq. (4al is useful for analyuc
results whereas that given in F.,q. t4b) is convenient for numerical
_imulation.

Result 2 allows one to use single-rate analysis techniques to
obtain results for multirate systems. For example, to compute the
time dommn response of a multirate system to a generic input, we
cart lind the time domain response of the ESRS using any applica-
ble single-rate technique, and then transform that reslxmu: back to
the ongmai multirate system using result 2.

Remit 3

The two-norm and rms value ofa discRqe signal w(m, n) and ia
ESRS signal wE(m, O) are equal or. equivalently,

ih,t_m. n)ll: = ilwf(m. 0)0 2 and rtll[w(m, n)l =rmsfw_m, 0)1

Result 3 follows directly from Eq. (2) and the definition of the
two-norm arid rms value. _°

Result 4

The maximum rms gain of a muitirate system is given by the H-

infinity norm of its ESRS transfer funcuon G_*j or, equ|valently,

rma [y(m.n) ]
sup = il Ge(:)li.

_.,.,.o rms {u(m.n)]

It is well known that the maximum rms gain of • SISO single-
rate system ts equivalem to the maxunum gain on thai system's
Bode plot. Although a transfer function for a multirate system does
not exist m the traditional sense, we can see from result 4 that the
H-infinity norm of a SISO multirate system plays the same role as

the maximum Bode plot gain of a stogie-rate system.
Result4 follows from result 3 and Refs. 10--12. It is also

Jenved. m part. ,n Ref. 4.

Result $

The smguiar values of a single-rate transfer function G(:) and its
ESRS transfer functton G_:) are related as follows:

ulGE(e,,_+_]-_ I cr[G(e4)l r _[G(eitO°,2+,,_l)]r

crlGfe,to*,'-,m,)lr.., o.IG(e/tt*'12wcN-,v_',)lrjr

where at. I denotes a column vector of singular values.
Result 5 relates the singular values of a single-rate system to the

_tngultr values of its ESRS and provides some insight into the sig-
nificance o( the singular values associated with the ESRS of a mui-
r,rate system. From result 5 we can see that one effect of mms-

tormmg G(:) mto Gr(:) is that the singular values of O(:) at high
_requenc_e_ are ,_iiased into (;,(:) at lower freouenctes. Conse-
quently, the aim. n} in result 4 that results ,n the maximum rms

gain does not necessarily contain the frequency _a associated with
:(;r(e';"!. t l" i,, the samphng period of the ESRS_. The input sig-

nal of maximum rrnsgmn must he constructedusingthe nght sin-

gular vectors of G_:) and restiit 2. We will demonstrate this proce-
,lure m the IOIIowmg section. ISee the Appendix Ior a denvaoon of
result 5. )

Rein# •

The stability, gain margm, and phase marlin of a SISO multlrate
,tom,.,,_hc ,Jctcrmmcd dlrcctlsfrom a N;qul_,t olott)l ,tsESRS

Recall from result I that the ESRS ot a SISO mumrate sV'_mm ,s
_IIMO I herelore, me multiloop P_yquist staOthty critenon must

be used in result 6. Aj This, however, ts one case where gain and
phase margins taken from a mululoop Nyqumt plot can he rater-

prated m the traditional sense because gain and phase vanatiom at
the mulurate system's inpm/oulput apply simultaneoaldy to ill the
inpu_ontputs of the ESRS.

Result 0 follows from Eq. (3) and is derived in Ref. 1.

Result 7

The robu_mess of a mulmate system can be desennined by

applying structured and unsuecmred singular value analysin to that
system's ESRS. Given the ESRS transfer funcUeo Ge of the nomi-

nal system and the uncertainty transfer functiott Af, we _ lq_
established singular value analysis tech.niqt_ to tirol the laue of

the smallest uncenaimy 0(%) that destabilizes the ¢imnd-inep
system m Fig. i. This result, however, isonly • commvmve eati-

mate of the size of the actual _udlest _ _ A
The mput/onq_ vecu_ of an ESRS are c_ vectm_ con-

mining the inpuVoutput values of the m_ system at N amalde
um_. Thue _(Ae) fonm_ uu_-mmSmqr_fva_maty-
sis Ko_mm for aot only the fietitioue _ amamlly ainu.
ciated with mmmmm_ sinptar value¢ but abo for _m-vm_al
and _ _. A valid _ for a _vm

• (A l) might, forexample, include block diqemd einmmla in Af
dm are unequnL This cenesponds _o a time-vm3nnl penmbatim
buemme the gain between u(m, n) and y(m, m) vlt_'_ with &

Another valid pemu'tmion could include non_m uplp_ bledc
dialgomi elemema m Ae. This conespmds to a noncamal _

tion because a futme input=(m, n*l) can affecsdm om_at omqlm
y(m, n).

For the ESRS uncerutmty Ae to represent the actual unceminty
A, its smgmm must obey Eq. (1). Rnding O"(Ae) subjec_ to Eq.
(1) requm_ the solution of a structured singular vaim Weblem.
Unfortunately. even simply smtcmn=d dynamic untamaiali_ in a
Sinl_-rate/multmm system Inmfmm to uncmainlim wilh com-
plex s_ in the ESRS. The complex sm_cmm makes it diffi-
cult to obtain a good estimateof thesize of the_ dmllabiliz.

ins st_'mn_ _. However, when the siqlle-z'ate/
mulla'me uncerudnty is a corn,am, as is the case for maw/prob-
lems, the F...SRSuncertainty is also a constant with a rq_ned block
diagonal form [see Eq. (3)].A good esumate of the solution of

such a structuredsingularvalueproblem withrepeatedblockscan
be found usingone of themethods in Refs.14-.17.

Result 7 followsdirectlyfrom the factthata sinsk-mehnulti-
ratesystem isstableifand onlyifitsESRS isstable._

Appfication

in this secuon we apply the results of the prevtoue mctioa io a

real world example: a mnitinm flutter suplmmma symenm for a
model wing. This application points out some of the pr_'ttcalifies
of mulurme robustness mudysis.

The model wing used in this example is being _ undm'

the Benchnuu,k Active Commls Pm_ecl at the NASA Lmllley

Research Center.Itconsistsof a rigidairfoilmmmmd em• pitch

and plunge aplxrana (PAPA). The PAPA mount providesthe two

delFees of freedom needed to mott¢l classical wm 8 flutm.. The
wing has One control surfgce located on the mnUng edge (TI_ of
the airfoil. Two accelerometers measure pitch and plunge accelera-
tions. We used a I_th-order mathematical model of the wm 8 for
the control system design. This model lncor][x)fat_l a Ngolld-order
Dryden gust niter, a third-order actuator model, and a IOth-ordet"

Fig. I _R8 G_tt w_th fKterm u_7 ,Z_t_.
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I v

t
J 2r_ Order
I DryclenFilter I

+

Actuator PAPA Wing
10 m C;cler Model

I

The form of the uncamlmty.&t in Eq. (5) leads dbectly u) a
smucuuredsingular v=due problem with repealed scalar block
uncemlmnes. Typicagy. am exact solutionfor such • problem ts
dif6cuh to 6nd. Fortunately.thisproblemhasonly two free pimlm-
etets,kt and _. andanexactsolubcmcan be found.We calculated

anexactvalueofthesizeofthesmidlestdestabilizinguncemumy
usmg thefollowingequauonl4:

I
- sup max p { U (O) GE(ej+) } (6)

(_ (&..) o<.<= o<e<zR

Fi_2

ca= - "rECont_ Sudace CommanOInput
G - PlungeAccelerlon

= P_chAccmenm_
,_E = Comr= Sor_:e 0decrY.

- C_ S_ _on Rate
v - DisturOanceln0ut

nJeckditp'nm ormodal wie w#h pitdt 8M phmme=psmrn=_

(t

Fi8.3

T T-0.o0s,.= 1 +=Orclr
t ' /..._._ FastOynamlcs

T,,0.005 se¢ I t
Cr,,-- FeKI 8TECn=

SlowDynnc=
T=0.02 sec L

Bieck diqp'mm o( the Imeeml.erdef meltb.lm= ¢emlNlmmlr.

airfoil model (two ntnd body modesand six unsteadyaexoslates).
A blockdiqpramof thismodel is shownin Fig. 2.

A second-order mull_ate flutl=r suppression system was
_lp_i for themodel wing. The multmm _, =hmm in
Fig. 3, comim of two fu_t-cxdercon=rolloops. The slow loop is
slmpled/updaledat$0 Hz. The b,s¢loop m mmpied/tq)dam_ at 2(X)
Hz. resulting mN= 4. We organized aft of the fTCellrmteta_ m
dm compensatorusingthe mukinne comlxmsatmsymhe=isalSo-
rithm describedin Ref.9.The freeImranum=rswerethepoleancl
zerolocauom forthefastand slow_ thegain valuesforthe
furand slowloops,andpm valuesforthecrossfeedbetweenme
fast and slow loops.

To analyze the robusme=sof the closed.loop system we exm-
inedtheIronand phasenmllmS attheplatompm and outputmd
me rms fpUm from dis_ inputto the ¢or_ol =re,tracedeflec.
tim ml dmltecUoume. Gain md Mie mmllmSixovi_ a mmm_
of theuncemW_ _iowed in me plam moclel. _he mm ipm= i_o-
viclea nmuum uf the ulk_wublec_m=Imu:e level befon=me con.
m)i murfumacmmmrUmm m aeMdecL

T_ imm Imdpime mllPm = me plam mpm were cM.
using result 6. The iocsticm of the con_q_ l complex

loop lain k, is shown in Fi8. 4. The muitfloop Nyclum d=smm for
dteopen-loop ESRS is shown in Fig. 5. Om md phase nllpns
caleulaled from me Nyqum dialram m iPvm m Tabte !.

Generalixed 8au_ and l_Um nu.qpns a_the plato umput were cal.
cula_d usml the ESRS and the serucnnd smlular value. For
amdysis,the closed.loop system was _ mm _ form of the
blockdialramshown m Fil,I.The uncemunty blockA and the
coweq)ondimI A_ =re

;*, 01 II,A, o!
&I &_=, ,

:0 L0 /.,;J
(3)

whme/_ is an N x N _ nulrix.The ¢onqdex lam _ ,
_*, md _. mlmtmu ukUmmplm maput um:_uUam..
m shownm Fi_. 4. G_ fln RS. I) is the mxnu_ ¢Imed-lo_ _ys-
_emcomonsed of themodel wml_andthe muluntte _uner suP1_s-
_lOtllyli_11.

with

U(O) = , t

when= _ (_,.) is the maximum singular value of the smldiest
d,==ud_ili=i=_&;md p(.) i= me =p=c== r,di=. T_ m=_8 va u
of • (&.,,=) is gi_ in Tsble 1.

c_=mau=d pm ==l plu=enuu_nsc_re=pmd_ =oO(&,.)
wine _ using the melhod describedin Ref. 18. l_gum 6
show=the "n=Siea of I_Wed stability" for =Unu_ (iade-
lx=dmt) lp,n md pi._ ci.ml_ m i+,, and 1+_.

; Li Model Wing &

L_

i r)_mm:k==l, kt=l:,=e,

IRIg. S MIdlleeP NyquMI IM_ _ PAPA _ talk m mmlmmm-

_mmm_

F_6 ReIte_ _ _ _y fer Ji_ clam_8 mtke

M/_un_(I ÷inlm II+il_
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I'abk 1 Rolmsuwu results for multira_- flutter m_ svstma

3danrnar2m at plant unpin ,with k, =k::OL dB [ - 12. _- I0]

Phase m an_,mill plant repot ( wRh k, : k2:0L (leg

'J't_m_ with k_= ]

Maximum rms gamo v to 6_1_.deg-s/m.

Maximum rms gain. v to _. deem.

=65

0.74

0.125

4.67

The maxmmmnnns gain values for disturbance input to conurol
surface deflecUon and deflection rate were calculated using
result 4. Result 4. however, m directly applicable only to
systems and not to our muted conUnuousldisc_le system. Tht_-
tort. we discrtUzed the plantdismrl_nce input and comml surface
deflection anddeflection rate outputs at _ H_ assuminga zero-
order hold at the dislzuaomlceinput. This umplimg m_ is 30 times
the Dryden lilter roll-off frequency. The values of the maximum
rms gains are then the peak values of the maximum smlPud_ value
plots of this new mulbrue systl_ (sue Fig. 7). The pe_ values.
which occur at uhMa=27 rad_ are gi_m in Table I. Since we
assumed a suur step diaumance input, the values m Table i are
lower, yet very close, boonds on tim nmaumum mm gains, s°

Contrary to what occurs m linear Ummmvmma single-hue sys-
tems. we cannot assume that the signal producing the maximum
rrns ga.m a._m,m_m , n) has she simple form sm(wm_Tm). Instead,
we must construct _m, mm(n_n) using result 2. For our example,
the input stgnalof maxmlum nm gain uma,,m(p,_ m) from me dis-
turtamce v to the control surface deflection grz was found as fol-
lows. Let

G_(e_%"r)=u'mmfer fun_on from v to

evaluatedat % (7a)
and

%e_'2!

=right singular vector associated with cP(Ge-(_r)] (7b)

Then. u,,m ,m(m. n) is given by

u,,ummm(m,n) = (Wv(n) Wv( n_ I)...W,,,(n_N+ I)]

czlsin(_0.m Tm+ O, )

× poh.sln(co_ Tm+ e z)

__,#m, m_ Tm + ov ) j
(8)

925

314

$

+ i011- r

,. 3 d.

o O.O_k .2

to+,L. ,,+
°0_ m so ,s _00- ,as -,_. f_

myra +mmw_al

RI.7 MmUmama_uim.valm i_m_, to hnz amd, m ihr_ :U2 a.

Comdm

la tl_ pulmr we Im_ summmaiz_l some imlXmam _
analysis mmlu. The fotatdetioa for _ maulm is the

_uva_... sin_-mm sy.m. _is system auo_ c_ m m._
. sumw_ and _ of a multime system usiag weU-
r,nown suqpe-nae tectmiqtms.

Them am. _er. _rawhecks to using the equlvakat single-
razesysmm. F'um. tim _te _ of its inpulS _ ommnm
Icada to mau_ trmsf_ lhncuom of high or0e_. This i, a _i _
eelmmuY v'_em.me rmio of me i_ulpm to me slmmm mmpiial9
_lay lamed of themulzinaesystem is la_. Secoad,even
wlteu the szmpleut commm pm'ame_ uncenaimy model is u_d
for robustness analysis, the compmite input and output smactum
lpvm rise to a serucum_ singular value problem with
diqpmud blodr_ This is a numm'ically diflloalt pm4dma m aOIve.

lu _t- _ sYsmm mulxlity and robummm analym im_d
on me equlvalem sinllle-nue sys_m is smuBIMor.mml _ the
mm£ysiscaa be pmemn_ usmll esmmishedsinllle-nue
but I_ results must be _ carefully in _ with its
mpuvoumut sumcn_.

Lem_lO:

Appendix

.(G_e_%] = (_r(G(ea_] r .(G(at*+_-,m_]z

o(G(et**+"_%] r. • • .(G(e_t*'m,-+-,,t'q_)]r Ir

Proo/." Let G(z) and G_(r_) be me transfer fumuem of a sin.
gl¢-mte systemand its F..SRS. respucuvely,suchthat

y(z) = G(z)_z) and Y_ aN)= G_(z_)u_zN) (AI)

We have wnnen G+(z_)asa fun_on of _ because me umpiinl
pmod fortheESRS isN timesu'm ofme single.ratesys_m auo.
ciatedwith Gfz).

It is shown m Ref. 3 that

ytz) = [i :-'! :-21 • • : +.+-'! ] y_z.s)

where I is an tdent:_ mamx of a_ate d,mens:om.
Now deliue

(A2)

where Wv is theswttchinll Iuncuon descnbedin rtsult 2. and T is
the smmplin8 penod of the ESRS.

From Eqs. t4) and 18) it is straightforward to see that. in gefleral.

the s,gnal oi max,mum rms pm for a mul,rate system is corn-
pined of the sum of sinuso_ of several dimnct _mciu. In
this example. Ihou|h. u_e , mu(m, n) is compllf, ed almmt purely of •

,,n_le sinuso+dof frequency of 27 r_l/s. This is becluse hi|her fre.
quencv_*llnals which mr|hi lntelrlictwith themultirlte ¢ompem_.
•_r :,nd increase Ihe rn'lsRain are attenuated bv Ih¢ Dryden niter
,:_U DIjnt d_, r1_imlc's

and

o

v(:) = _t') =

Y (e')zI

y(O z)

(e _-..7 ::+

u (e°x)

u (O's)

.u (e v" ':)j

(A3)

(_c:l=l)lock dsaliG(d)":). G(6':) ..... G(6"- ':)l _A4)

.+
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where

_._ e,2ttlllV,J

such that

.T(:)=_ (:)'_(:) IAS)

We can now wnte :_.(:) and _(':) m terms o; v__(=_ ) and u_ ._ )
using Eq. qA2 ).

_q:)=Tf:))'E(=_) u(:)=T(z)uL_= _) (A6)

where

I :-;I - 'n-I' l• ..

- (N-I)

T(:)= I (el:) -jl (0 I:) l

:

(0N-,)_, .. (ev_m -,N-,,/ : I . :) !;

(A71

Then _om Eqs. (Ai) and (A51 through (A61

G_(_)=T-_C(zIT (A81

Notic=ne mat T(e_)Tfe_)*=NI. we can dehne a unilary mamx
T(e _e) sucl_ that

T(e_)=\/7_(# e) and Tfe'eV'=_ll'v_)Tfe_) * _A9)

Now, using Eqs. (AS) aaK! (A9) and the properties of umlarv
mamces, it is su'mghtforward to show that

e{G_em)] =e[O (era)] (A !01

Since (_ is block diagonal [see F.4. (A41], and the singular values

of a block diagonal mamx are the umon of the singular values of

each block, we can rewrite Eq. (AI0) as follows:

_[OF(e/Ne)I= lelG(e_)l r o'[O(t_e+r2-/ml)]r

GrlGf#le*'4"/N_h]r... o.[Gf#*e*l_,-s-i_/nll)lrlr
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ABSTRACT

A new methodology for multirate control system desiga i,; described. It

accommodates a general multiple-input multiple-output control law structure that allows

the sampling rates for the plant sensor output signals, the update rates for the processor

states, and the update rates for the plant control input signals to be independently

specified. It includes a capability to design for multiple plant conditions so as to achieve

robustness to plant parameter variations. Its analysis components include a method for

determining conventional gain and phase margins, a method for determining a bound on

the smallest destabilizing uncertainty, and a method for determining the maximum RMS

gain of a multirate system. The methodology is demonstrated by application to the

design of a multirate flutter suppression system for a model wing.

INTRODUCTION

Multirate control systems occur frequently in engineering practice. They have

received comparatively little attention in the technical literature. There are several

reasons for this. One is a lack of recognition by the research community of the practical

motivations for multirate controllers. Compared to single-rate controllers, they offer the

relatively obvious real-time computing efficiencies in multi-loop, multi-function, multi-

time-scale systems. But with real-time computing hardware costs as low as they are, such

efficiencies usually do not justify the additional complexity of a multirate design.

a

Assistant Professor

* Associate Professor. Member AIAA



Mason & Berg Multirate Flutter Suppression System Design for a Model Wing 2

In practice, multirate controllers are often necessitated by hardware constraints. For

example, when a sensor provides a signal that is updated only at a fixed interval, except

when the update period happens to be a suitable sampling period for a single-rate

controller, a multirate controller must be used.

The logistical burden that a multriate system presents is a second reason for the lack

of attention given to multirate control systems. This burden is a consequence of the fact

that a multirate system is time-varying from one sampling instant to the next.

Fortunately, a well designed software package can spare the designer from most of the

burden of the logistical difficulties, thereby allowing him or her to concentrate on the

more fundamental design issues.

This paper describes a multirate control system design methodology for which we

have developed such a software package. The methodology was originally proposed in

Reference 1. It employs the control law synthesis algorithm described in Reference 2,

and the modeling and analysis tools described in References 3 and 4. The description is

via an application to the design of a multirate flutter suppression system for a model

wing.

The remainder of the paper is divided into four sections. The first describes the

model wing, its open-loop characteristics, and the flutter suppression system design

goals. The second describes the design methodology and its application to the flutter

suppression system design. The third presents the results of the flutter suppression

system design. Conclusions are given the final section.

PROBLEM DESCRIPTION

The BACT Wing

The Benchmark Active Cot;trois Technology {BACT) Wing is being developed at the

NASA Langley Research Center to study the modeling, prediction, and control of

aerodynamic flutter. It consists of a rigid airfoil mounted on a flexible base. The base,

called the Pitch and Plunge A_paratus (PAPA), provides the two degrees of freedom

necessary to model classical wing flutter. The airfoil has one control surface (CS) located

on the trailing edge. Two accelerometers, one near the leading edge (LE) and one near

the trailing edge (TE) measure the airfoil's motion. References 5-6 describe the BACT

Wing in detail.

The flutter suppression system was designed using 16 _ order linear state models of

the BACT Wing developed by NASA Langley's Structural Dynamics Division. Each
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model consists of 4 rigid body states corresponding to the pitch and plunge modes,

6 unsteady aerodynamic states, a second order actuator model, a second order Dryden

filter, and two first order anti-aliasing filters. Figure l shows a block diagram of this

structure. NASA provided us with 24 such models, each describing tke dynamics of the

wing in Freon at a different operating point. The operating points include dynamic

pressures above and below the critical flutter pressure at three different mach numbers.

See Table l for a summary of the operating points.

Table 1. Operating points for BACT Wing. All operating points assume Freon medium

Dynamic Pressure (psi')
(Unstable operating points are in gray)

Mach 0.50 75* 100 122 132 150 175 200 225*

Mach 0.70 75 100 125" 136 146 175" 200 225

Mach 0.78 75* 100 125 141 151 175 200 225*

* Operating points used for compensator synthesis

Open-Loop Characteristics of the BACT Wing

Two modes - pitch and plunge - dominate the open-loop dynamics of the BACT

Wing model. For example, the poles and zeros of the CS command to the LE and TE

accelerometer output transfer functions at mach 0.5 and 75 psf are shown in Figures 2(a)

and 2(b). As dynamic pressure increases, one pair of these poles moves toward the right

half plane and crosses the imaginary axis at the stability boundary. Figure 3 shows this

pole movement. The corresponding movements of the open-loop poles not shown in

Figure 3 are relatively small.

The dominant pitch and plunge modes are observable at all operating points with

either the TE or the LE accelerometer outputs, and are controllable at all operating points

using the CS command input. The zeros of the CS command to TE accelerometer and the

CS command to LE accelerometer transfer functions are shown in Figure 2 for the mach

0.5 and 75 psf operating point. As dynamic pressure increases, the non-minimum phase

zeros associated with the TE accelerometer migrate into the left half plane. The

minimum phase zeros, associated with the LE accelerometer and located near the

dominant poles, migrate into the right half plane. See Figure 3.

At low dynamic pressures the transfer functions from the CS command input to the

TE and LE accelerometer outputs are non-minimum phase. Non-minimum phase

systems are more difficult to control than minimum phase systems 7. An alternative

output is one which measures the difference between the two accelerometer signals. This

new output is essent,ally _itch acceleration. The CS command to pitch acceleration
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transfer function is minimum phase for all operating points, and the BACT Wing is

relatively easy to control using this new output. We chose not to use this output directly

in our designs, however, because it does not adequately account for the inevitable

uncertainty in the TE and LE acceleration measurements.

Design Objectives

Our primary objective was to design a multirate flutter suppression system that will

stabilize the BACT Wing when it is flown (at some future date) in the wind tunnel at

speeds between roach 0.5 and 0.78 and dynamic pressures between 75 psf and 225 psf. In

addition, the following constraints, most of which are functions of the hardware that will

be used to implement the control law, were specified by NASA.

Control Activi_. Constraint: For unity RMS white noise input disturbance ( 1 in/sec

RMS), the steady state covariance of the CS deflection must not exceed 0.0625

deg 2 (0.25 deg R_MS), and the CS deflection rate must not exceed 65 deg2/sec 2

(8.0 deg/sec RMS).

Sampling Rate Restrictions: The minimum sampling period is 0.005 sec. For

multirate sampling, all sampling periods must be multiples of 0.005 sec.

Computational Delay: All compensators must account for a minimum 0.005 sec

i computational delay.Robustness Constraints: The gain and phase margins at the compensator output,

_ which is a scalar signal, must be at least +6db and +45 °. The maximum singular

value of the smallest destabilizing multiplicative uncertainty at the compensator

input must be 0.75, which corresponds to simultaneous gain and phase margins at

the two sensor inputs to the compensator of :t-6db and +45 ° 8

Finally, our multirate control law was to provide the same performance and stability

robustness as a comparable single-rate controller yet require less hardware to implement.

i THE DESIGN METHODOLOGY

! We designed two flutter suppression systems for the BACT Wing: a single-rate

system, for use as a baseline for comparison, and a multirate system. Each was designed

using the methodology in Reference 1. This methodology defines a general approach and

provides the specific tools needed to solve a design problem. The methodology has three

parts: modeling the multirate system, optimizing the digital processor gains, and

analyzing the performance and robustness of the closed-loop system. In the following

paragraphs we describe the methodology and its application to the design of the two

flutter suppression systems.
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Modeling the Flutter Suppression System

A block diagram of a generic flutter suppression system is shown in Figure 1. In this

system, each sampler at the plant output can operate at an independent rate, the digital

processor can update each processor state at an independent rate, and each zero-order-

hold at the compensator output can operate at an independent rate. This compensator

model has the form of the Generalized Multirate Control Law Structure (GMCLS)

discussed in References 1, 3 and 4. The GMCLS provides a framework for modeling

multirate compensators and eliminates much of the bookkeeping involved with multiple

sample/update rates and/or time delays. Using the GMCLS, it is straightforward to

represent a multirate system as a periodically time-varying single-rate system. Later we

will see that the resulting periodically time-varying system can be further transformed

into a time invariant system by "lifting ''9 or "block processing" 10.

There are two components to the GMCLS: the "sampling schedule" and the "'digital

processor gains". The "sampling schedule" indicates the sequence of sample and update

activities for all samplers, processor states, and zero-order-holds. In the GMCLS, all

sample and update activities must occur at integer multiples of a specified time period T;

and the sampling schedule must repeat itself every NT, where N is an integer. Often T

and N are functions of the hardware used to implement the control law. The secor, d

component of the GMCLS is the "digital processor gains" A:, Bz, C,, and Dz. These gains

determine the dynamics of the digital processor and are typically free design parameters.

We modeled both the single-rate and the multirate flutter suppression systems using

the framework of the GMCLS. Both compensators have the form of the generic

compensator shown in Figure 1, with two inputs, TE and LE accelerations, one output,

CS command, and second order digital processor dynamics.

The single-rate compensator has a sample/update rate of 50 Hz, which is

approximately 10 times the frequency of the dominant pitch and plunge modes. The state

space structure of the compensator's digital processor is

[o l Fo TE
x2(n+l)J=Lal a2._x2(n)f+L l b 2 _LE Accel(n)_Accel(n)J

(la)

CScmd(n) = [cI d xl(n)l
c2_x2(n) _ (Ib)

where Xl and x2 are the digital processor states: TE Accel and LE Accel are the

acceleration inputs from the A/D converters: and CS cmd is the command output to the
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zero-order-hold, ai, bi, and ci are the free gains to be optimized. The structure of (1)

represents a minimal realization of a second order compensator 3.

The GMCLS sampling schedule corresponding to the single-rate compensator is

shown in Figure 4. In this figure, circles on each time line indicate when a particular

sample or update activity occurs. The GMCLS "digital processor gains" correspond to

the matrix elements in the digital processor's state space description given in (1).

The multirate compensator was designed to provide the same performance and

stability robustness as the single-rate compensator using a reduced number of analog-to-

digital converters. In the multirate compensator, the digital processor states and CS

output are updated at 50 Hz, while the accelerometers are sampled at 25 Hz. In addition,

there is a 0.02 second delay between the sampling of the TE accelerometer output and the

LE accelerometer output. Consequently, the multirate compensator requires only one

A/D converter to sample both accelerometer outputs.

To maximize the benefits of its multiplexed sampling schedule, the mtlltirate

compensator uses periodically time-varying digital processor gains. One set of gains is

used when sampling the TE accelerometel output and another set is used when sampling

the LE accelerometer output. The state space structure of the multirate compensator's

digital processor is thus

xl(n+l)_=[al(On) I Ifxl(n)l ro _<.)_Acce,(.,_x2t.+l)j a2t.)_ll. 2t,,)f+L1b2(n)J[LE Accel(n)J (2a)

• CScmd(n)=[q(n) c (n "{xl(n)]
2 'r x2 n) (2b)

where Xl and x2 are the digital processor states; TE Accel and LE Accel are the

acceleration inputs from the A/D converters; and CScmd is the command output to the

zero-order-hold, ai(n), hi(n), and ci(n) are the free gains to be optimized. These gains are

functions of n and are periodically time varying, e.g., ai(n) = ai(n+2).

The sampling schedule for the multirate compensator is shown in Figure 5. Notice

the multiplexed sampling scheme of the two MD converters. The GMCLS "digital

processor gains" correspond to the matrix elements in the digital processor's state space

description given in (2), just as in the single-rate case.

Optimizing the Digital Processor Gains

To determine the values of the digital processor gains for the two compensators, we

used the low order rnultirate compensator synthesis algorithm described in Reference. 2.

along with the multiple plant conditions idea of Ly I i.I 2. The synthesis algorithm uses



Mason & Berg Multirate Flutter Suppression System Design for a Model Wing 7

numerical optimization to determine values of the digital processor gains that minimize a

quadratic cost function. The multiple plant conditions idea employs a cost function

which is the sum of the costs associated with a single compensator in feedback with a

nominal plant and perturbed variations of that plant. The digital processor gains that

minimize this new cost function are robust in that they stabilize the nominal plant and the

specified variations of that plant.

The multiple plant conditions cost function has the form

J,n = lira Zr. lui(t)iLMFR,]t",(t)jj
t_ i=1

(3)

where E is the expected value operator; the integer Np is the number of simultaneous

plant perturbations under consideration; the vectors xi and ui represent the plant states and

control inputs, respectively, of the ith plant condition: and Q i, M i, and R i are the

weighting matrices associated with the ith plant condition, and are free parameters

selected by the designer.

Using the synthesis algorithm in Reference 2 and the cost function in Eqn. (3), we

found values of the digital processor gains for the single-rate and multriate flutter

suppression systems that stabilized the BACT Wing at all 24 operating points. Instead of

optimizing over all 24 operating points, however, we selected six representative ones. _

The six are indicated in Table 1.

For each of the six operating points, we selected a unique set of weights, Qi, Mi, and

Ri, for the cost function in (3). To select Qi, Mi, and Ri we used that fact that the gains

which minimize (3) corresponds to the LQ re_zulator feedback gains when the

compensator is a continuous time design, the plant outputs are the values of tlie plant

states, and the compensator is strictly a feedback gain. Accordingly, we first designed a

continuous LQ regulator, one for each of the six operating points, that satisfied NASA's

performance criterion. The weights were chosen so that the closed-loop damping of the

pitch and plunge modes was greater than 0.07, and the RMS control surface activity

constraints specified by NASA were satisfied. (For cemparison, the damping in the

open-loop BACT Wing at a stable dynamic pressure of 75 psf is approximately 0.025.)

Next, we uniformly scaled Q/, Mi, and Ri to obtain a unity LQ cost for each operating

point for a 6 inch/sec RMS white noise disturbance input. Finally, we used the values of

Qi, Mi, and R i from each LQ regulator design for the corresponding values in (3).

Optimum values of the digital processor gains were found by minimizing the cost

function (3) using the synthesis algorithm in Reference 2.
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After optimization, we evaluated each compensator's performance and robustness

using the methods discussed in the next section. One of the robustness measures we

considered was the maximum singular value of the minimum destabilizing multiplicative

uncertainty at the compensator inputs (a structured singular value). The size of the

structured singular value for our initial designs was unacceptably small. It was less than

0.20 at some operating points, whereas NASA had specified a value of 0.75. To remedy

this we added fictitious sensor noise and reoptimized the processor gains (our initial

designs assumed no sensor noise). Our addition of fictitious sensor noise was motivated

by the Loop Transfer Recover technique for LQG systems design l3.

Analyzing the Flutter Suppression Systems

Recall that we modeled the flutter suppression systems using the GMCLS. It is easy

to represent a compensator having the GMCLS as a periodically time-varying single-rate

system. Furthermore, it is straightforward to transform a single-rate periodically time-

varying system into a single-rate time-invariant system using "lifting" or "block

processing". We refer to the resulting single-rate time-invariant system as the Equivalent

Single R,_te System (ESRS). See References 1 or 4 for a discussion of the properties of
the ESRS.

An ESRS has the following form

x(k+ N) = AEx(k )+BEUE(k) (4a)

YE(k)= CEx(k)+ DeuE(k) (4b)

where

[ y(k) }yE(k)=l y(k.+l) and UE(k)=.

tyfk+ V-l)

u(k) ]

u(k:+ 1) t (4c)

and where x(k) are the states of the discrete ;ystem, u(k) are the discrete inputs, and _k)

are the sampled outputs. The subscript E denotes vectors and matrices strictly associated
with the ESRS.

A key feature of an ESRS is that its input/output vectors are composite vectors

containing the input/output values of the original system at N sample times.

Consequently, an ESRS is always MIMO even if the original system is SISO. Another

feature is that an ESRS always has a nonzero direct feed through term. When the original
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system has no dynamics, the direct feed through term of its ESRS, D E, is block diagonal.

For example, the ESRS of a constant matrix A is

AE = Block Diag[A, A ..... A] with N blocks (5)

The ESRS allows one to manipulate and analyze single-rate and multirate systems as

if they were both single-rate. ESRS state space or corresponding transfer function

descriptions can be used to calculate input-output relations for systems in series or in

feedback loops just as in classical control 14. For example, to calculate the ESRS of a

time-invariant plant in feedback with a multirate compensator, we would calculate the

ESRS of the plant and compensator individually, using the same value of T and N for

both, and then combine them using block diagram algebra. Furthermore, we could

determine the stability of the original closed-loop system by calculating the eigenvalues

of the new closed-loop ESRS system 15.

We used the ESRS to evaluate the performance and robustness of our multirate and

single-rate flutter suppression systems. First, we formed their closed-loop ESRS's, and

then we applied analysis techniques for linear time-invariant systems to the resulting

single-rate systems. In the following section, we discuss the results of these analyses.

DESIGN RESULTS

By way of review, our two flutter suppression systems are:

1) Single-Rate Second-Order with TE and LE acceleration inputs and CS command

output

2) Multirate Second-Order with multiplexed TE and LE acceleration inputs and CS

command output

We compared the performance and robustness of these two compensators in the

following areas

1) Gust pulse response

2) Maximum RMS gain from disturbance to the control surface deflection and

deflection rate

3) Gain and phase margins at the compensator output

4x The maximum singular v,ttue 9f the minimum destabilizing mu!tiplicative

uncertainty at the compensator input
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The results are presented for three operating points, mach 0.50 132 psf, mach 0.70

146 psf, and math 0.78 151 psf. Each of these is 5 psf above the critical flutter dynamic

pressure for the corresponding mach number, so the BACT Wing is nominally unstable at

each of these operating points. It is important to note that none of these operating points

were used for the compensator optimization and so the compensators were not tuned to

these particular operating points. Although we will discuss performance and robustness

at only three operating points, the following results are indicative of the compensator's

performance and robustness at all 24 operating points.

Gust Pulse Response

The gust pulse response provides an indication of the transient response of the closed-

loop system to a disturbance input. We computed the gust pulse response by simulating

the response of the BACT Wing in feedback with the flutter suppression system to a

disturbance input pulse with an amplitude of 10 in/see and a duration of 0.004 seconds.

Figures 6-7 show the response of the BACT Wing at mach 0.70 and 146 psf to the

specified disturbance gust pulse. Also shown is the response of the wing with a

continuous LQ regulator. The cost function weights for this LQ regulator design satisfy

the same design criterion as were used in the multirate and single-rate designs. The gust

pulse responses at the other operating points are similar to those shown in Figures 6-7.

For comparison, gust pulse response plots for the multirate compensator synthesized

without fictitious sensor noise are also shown in Figures 6-7. Recall that we added

fictitious sensor noise to the multirate design in order to improve the robustness at the

compensator input. The primary effect of adding sensor noise is to decrease the damping

of the pitch and plunge modes. As can be seen, the reduction in damping is more

prevalent in the pitch response than in the plunge response.

Max RMS Gains

One of NASA's specifications was a limit on the steady state covariance of the

control surface deflection and deflection rate for a 1 in/see RMS white noise disturbance.

Our closed-loop system consists of a continuous plant and a discrete compensator.

Therefore, these steady state covariances are periodically time varying. In Figure 8, we

show the steady state covariance propagation for the BACT Wing in feedback with the

two compensators at an operating point of math 0.70 and 146 psf for a unity RMS white

noise disturbance.

One meaningful interpretation of NASA's specification would be to look at the peak

steady state covarmnce value taken from the covariance plot. This value, though, is an

upper limit on the closed-loop gain for a white noise disturbance and is not a true
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indicator of the control activity level. A better measure of control activity would be the

maximum RMS gain.

The maximum RMS gain of a multirate system is given by

sup ..RMS(y(k)) = sup RMS(yE(k)) =IIGF.(zN)II,o (6)
RMS_u_o RMS(u(k )) RMS(,,E_O RMS(uE(k ))

where IIG&-(zN)lloo is the H-infinity norm of the transfer function of the ESRS system

between the input and output of interest, u and y respectively. See References 1 and 4 for
details.

To apply the discrete equation (6) to our mixed continuous/discrete system, we

created a new discrete multirate system in which the continuous inputs and outputs of

interest are sampled very fast. We chose a sampling rate for the CS deflection and

deflection rate of 500 Hz. This is more than ten times the control surface actuator roll-off

frequency. Figure 9 shows a block diagram and sampling schedule of this new discrete

time system in feedback with the single-rate compensator. This closed-loop system is

multirate even though the compensator is single-rate. The ESRS for the system has a

sample/update rate of 500 Hz and an N of 10.

We used this new ESRS system to estimate the maximum RMS gain of the original

single-rate system between the disturbance and the CS deflection and deflection rate. A

similar method was used to calculate the maximum RMS gains for the disturbance input

to the CS deflection and deflection rate for the multirate flutter euppression system. The

results, for the BACT Wing at tile three representative operating points, are summarized
in Table 2.

Gain and Phase Margins

Gain and phase margins were calculated at the compensator output using the ESRS

and a multiloop Nyquist diagram. The ESRS of the plant and compensator were

computed independently and then combined in series to form the ESRS loop transfer

function. Gain and phase margins were subsequently measured directly off the multiloop

Nyqu,st plot of this function. These are traditional gain and phase margins, and assume

that the gain and phase cannot vary simultaneously. The details of this technique are
given in References 4 and 16.

The gain and phase margins for the BACT Wing at three operating points are

presented in Table 2. These values are typical of the margins at all 24 operating points.

although the margins tend to be better at lower dynamic pressures and slightly worse at

higher dynamic pressures. A representative Nyquist diagram is shown in Figure 10. This
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Table 2. Performance and Robustness Summary

Mach 0.50, 132 psf

SinlZle-rate Multirate

Max RMS Gain 0.22 0.25
Distr. to CS Deflect.

(deg see/in)

Max RMS Gain 6.5 6.9
Distr. to CS Def-rate

(deg/in)

Gain Margin 12 db

Phase Margin 41"

_y_ kO] 0.41

w/o sensor noise

Mach 0.70, 146 psf

Sml[le-rate Multirate

Mach 0.78, 151 psf

Single-rate Multirate

0.19 0.19 0.11 0.11

2.4 2.6 1.5 1.5

12 db 10 db 10 db 9 db 9 db

38° 45 ° 40 ° 43 ° 40 °

0.45 0.38 0.44 0.35 0.45

0.35 0.26 0.32 0.25 0.31

particular Nyquist plot has two encirclements of the - 1 point because the open-loop plant

has two unstable poles.

Robustness at the Compensator Input

The uncertainty at the compensator input was assumed to be a multiplicative

perturbation of the form shown in Figure 11, where k I and k2 are complex gains. We

transformed this system into the output feedback form traditionally used in robustness

analysis using simple block diagram algebra. However, when the compensator is

multirate we must use the ESRS of the plant, compensator and uncertainty. A block

diagram of Wis closed-loop ESRS for the multirate flutter supprt, ssion system is shown in

Figure 12. GE is the loop transfer function comprised of the compensator and plant

ESRS transfer functions connected in series.

Now, given the system in the forrr, shown in Figure 12, we can calculate an exact

value for the size of the smallest destabilizing perturbation 17. First rewrite AE in

Figure 12 as

AE = llkl + 12k2 (7)
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where i! = diag{ 1 0 1 0 ... 1 0} with 2N diagonal elements, and where 12 has a similar

form. Then it can be shown that 17

o'(Amin)= s_p max0 P I! +12eJO]HE(e j¢) (8)

where O(Amin) represents the maximum magnitude of the smallest destabilizing kl or k2;

0 _< _ _<7t: 0 _<0 _<21t:/3 is the spectral radius; and HE(z N) = GE(zNXI- G£(zN))-I.

We are guaranteed that the system in Figure I 1 will remain stable if

(9)

We are also guaranteed that when (9) is violated, there exist values of kl and k2 that

destabilize the system in Figure I I.

Equation (8) is straightforward to solve with a two dimensional search in ¢ and 0.

The results are given in Table 2. For comparison, the corresponding results for the design

without the fictitious sensor noise are also given in Table 2. Notice that the addition of

the fictitious noise increases the maximum singular value of the smallest destabilizing

uncertainty by as much as 60%.

Even with the fictitious sensor noise, the robustness at the compensator inputs does

not meet NASA's specification of a maximum singular value of 0.75. We could have

improved the robustness at the compensator output further by increasing the fictitious

sensor noise level, but we chose not to do so because doing so simultaneously reduces the

gain and phase margins at the compensator output.

CONCLUSIONS

A new methodology fo: multirate control system design has been develaped. It

accommodates a general multiple-input multiple-output control law structure that allows

the sampling rates for the plant sensor output signals, the update rates for the processor

states, and the update rates for the plant control input signals to be independently

specified. It includes a capability to synthesize a single control law for multiple plant

conditions so as to achieve robustness to plant parameter variations. Its analysis

components include a method for determining conventional gain and phase margins, a

method for determining a bound on the smallest destabilizing uncertainty, and a method

for determining the maximum RMS gain of a multirate system. As is demonstrated in



Mason & Berg Multirate Flutter Suppression System Design for a Model Wing 14

this paper by application to the design of a multirate flutter suppression system for a

model wing, this new methodology is a practical and effective tool for multirate control

syqem design.
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SECTION ONE

INTRODUCTION

1.0 OVERVIEW

The design and analysis of even a simple muitirate compensator can be a'complex task. In this document we

describe some Matlab M-Files which aid in muitirate design. They include M-Files for modeling multirate systems,

for computing optimum values of a multirate compensator's gains, and for generating time domain simulations.

The remainder of the document is divided into three sections. In Section Two we review the basics of multirate

modeling and our optimization algorithm. We also present the key concel_tS and notation which are utilized in

Section Three. Section Three describes each M-File, detailing its inputs and outputs. Thl: M-Files in this section

are divided into three categories: modeling, simulation, and synthesis. Finally, in Section Four we conclude with a
multirate design example.

1.1 SOFTWARE REQUJREMENTS

In addition to the standard Matlab toolbox routines, this software uses M-Files from both the Control_Toolbox

and the OptimizationTooibox. These two toolboxes must be present for the multirate software to operate.



SECTION TWO

BACKGROUND

2.0 OVERVIEW

In the following paragraphs we present the notation used in the remaining sections and review some key

concepts which will be helpful to those using this software. A detailed explanation of the ' _ ,3' behind our M-Files
can be found in References 1-3.

2.1 A MULTIRATE FEEDBACK SYSTEM

A multirate sampled-data system consists of a continuous plant in feedback w,th a multirate compensator. A

bi ck diagram of such a system is shown in Figure 2.1. The vector Ys in this figure represents the continuous plant

sensor output. Each element of Ys can be sampled at an independent rate. The vector _ represents the sampled

value ofy s available to the digital processor. (In our double index notation, the discrete signal p(m,n) results from

sampling the continuous signal p(t) at the times t = finN+ n)T; where the integer N is the period of repetition; T is

the sampling time: m =0, 1.... ; and n--O, I ..... N-1.) The digital processor obtains the current ':alue of y and

combines it with the current processor state vector, _', using the state space structure shown in Figure 2.1. Each

element of the processor state vector, _', can be updated at an independent rate. The continuous output from the

compensator, represented by the vector u, is formed by holding the output from the digital processor,_, win a zero-

order-hold. Each element of the vector _ can be held at an independent rate to form u. The v,-_tors u and w

represent the discrete sensor and continuous process noise respectively.

Conceptually, one can divide the multirate compensator into two parts, the "sampling schedule" and the digital

processor gains. This is the approach used in the synthesis and analysis software. The "sampling schedule" is a

description of when each compensator input is sampled and when each output and processor state is updated, while

the digital processor gains determine the dynamics of the digital processor. In the following paragraphs we discuss
each in detail.

Continuous Rant

W_-._n_n)

Zero Order Hold(s)
-u(nl,rl) -- Cz(r_rrt_ + Dz(n)y(Em)

Digital Proce=_or

- Multirate Compensator

yc(t)

_0

7

pier(s) I

v(=n) I

I

Figure 2. I Closed-loop Multiram Syslem
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2.1.1 The Sampling Schedule

In general, the sampling and updating of Ys, _', and _ in Figure 2. ! can occur at any time. We, however, require

that these san.pie and update activities occur only at integer multiples of some fixed time, called the shortest time

period (STP). The actual value of the STP is arbitrary, hut is often a function of the hardware and software used to

implement the control law. We also require that the sampling and updating activities of the sensors, states and

outputs repeat themselves after some fixed period of time. The period of repetition of the sampling schedule is
called the basic time period (B'I'P). Finally, we define

BTP
the integer N=_-_ andthe value T=STP (2.1)

In our double index notation, the first index (m) in p(m,n) indicates the integer number of BTP's which have elapsed

when the sample/update occurred and the second index (n) indicates the integer number of STP's which have
elapsed within the current BTP when the sample/update occurred.

We can represent the sampling schedule for the multirate compensator graphically, as shown in Figure 2.2.

The figure shows a time line for each sampler, processor state, and zero-order-hold. The time line is divided into

one STP increments. On the left side of the time line is a description of the signal or state, being sampled or

updated. On the right side is a description of the particular activity represented by the time line, e.g. state update,

sampler, or Jero-order-hold. Circles on each time line indicate when a sample or update activity associated with that

particular signal or state takes place. Usually the sampling schedule is shown for only one BTP since the sampling
schedule repeats itself every BTP.

In most applications, the sampling/updating activities for a given sensor, output or state will be periodic within

the BTP, as is shown in Figure 2.2. However, the sampling/updating activities do not have to be periodic within the

BTP. The only requirement is that the sampling/updating activities have some period of repetition (the BTP) _u_d

that they occur at integer multiples of the STP. Once the STP and BTP have been selected, the designer can

arbitrarily specify sampling/updating activities at any multiple of the STP with in one BTP. An example of a

muitirate sampling schedule in which the sampling/updating activities are not periodic within the BTP is shown in

Figure 2.3. A sampling policy like this might be used to multiplex multiple inputs through a single analog to digital
converter.

2.1.2 Digital Processc, r Gains

The processor gains are the values of the matrices Az, Itz, Cz, and D z in Figure 2.1. Like the sampling schedule.

they can be periodically time-varying with a period of repetition of one BTP. Generally, these matrices are free

design parameters which can be adjusted by the designer tc imprt, ve the performance of the multirate compensator.

The synthesis software discussed later in this document can be used to calculate optimum values for these gains.

2.2 THE EQUIVALENT TIME-INVARIANT SYSTEM (ETIS)

A multirate compensator with the structure discussed in Section 2.1 can be mode!ed as a periodically time-

varying single-rate compensator b,, appending appropriate hold states to the digital processor model. This new
compensator has the form

xfm,n+l)= A(nlx(m,n)+B(n)u(m,n) +2.2a)

ys(m,n)= C(nlx(m.n)+ D(n)u(ra.n_ (2.2b)

forn = O.I,...N-I.andre =0,I ....

This compensator has a sampling periodof one STP and a periodof repetitionof one BTP (or NT). ys(m.n)

representsthevaluesof ._t)sampledeverySTP: u(t)isformedby holdingu{m,n)witha zero-order-hold.
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0 T 2T 3T 4T 5T 6T 7T N=4

Figure 2.3. Example muitirate sampling schedule with aperiodic sarnpl!ng activity

The periodically time-varying single-rate compensator can be further transformed into a single-rate Equivalent
Time-invariant System (ETIS) with the form shown below.

where

_m+l,0) = AEX(m,O ) + BEUE(m,O )

YE(m,O) = C Ex(m,O ) + D EuE(m,O)

(2.3a)

(2.3b)

and

F Ys(m,O) ]

/
Lys(m _/- 1)1

u(m,O)"_
I u(m i) /

" I
Lu(m_/- l)-J

(2.4)

We use the subscript E to denote vectors and matrices strictly associated with the ETIS. Notice that the ETIS

input/output vectors are composite vectors containing the input/output values of the multirate (or periodically-time

varying) system at N sampling times. Consequently, an ETIS is always MIMO even if the original system is SISO.

If the muitirate system has p inputs, q outputs and a sampling period of one STP then the ETIS is a single-rate linear

time-invanant system with Np inputs, Nq outputs and a sampling period of one BTP.

The ETIS is fundamental to the analysis of muitirate systems. It allows one to evaluate the performance and

stability of complex systems comprised of multirate, periodically time-varying and/or single-rate components using

only modified linear time-invariant single-rate techniques. For example, to evaluate the stability of the system in

Figure 2.1, we would first transform the muitirate compensator into its ETIS with a given value for N. Then we

would discretize the plant at the STP of the compensator using a zero-order-hold and transform the resulting single-

rate system into an ETIS using the B'IV of the compensator. Next, the plaPt and compensator ETIS's could be

combined in feedback just as if they were traditional single-rate systems. Finally, we could determine the stability

of the original multirate sampled-data system from the eigenvalues of its closed-loop ETIS.



2.3 OPTIMIZINGTHEDIGITALPROCESSORGAINS
The synthesis software discussed later calculates optimum values of the digital processor gains, A z, Bz, C,, and

D:, by minimizing a quadratic cost function which reflects the petiormance of the closed-loop system in Figure 2.1.
The cost function has the form

JL.(t) jj (2.5)

where J is the cost associated with the closed-loop system shown in Figure 2.1. The vector Yc is the continuous

criterion output and u is the continuous control input QI, Q2 and M are the cost function weighting matrices which
are selected by the designer.

This cost function has the same form as that minimized by a continuous time LQR design. Thus the cost

associated with the optintized multirate compensator and that of an LQR design can be compared directly. The
designer can also use this fact to help select appropriate values for QI, 0.2 and M.

To improve the robustness of the compensator, the optimization algorithm can optimize the digital processor

gains for several different plant perturbations simultaneously. The resulting compensator will stabilize the plant at

each perturbation and provide overall optimum performance. This is accomplished by minimizing the new cost

function of Eqn. (2.6) which is the sum of the costs associated with each plant perturbation.

>"
i:l i- it-'t ' & JLl¢t).lj (2.6)

Here ._ is the cost associated with the ith plant perturbation and there are Np plant perturbations.

Optimum values of A z, Bz, Cz, and D z. occur when

_ 0.# 0.#
"-d"_'z= O, '_-'_'_=0. "_'= O, and "_-]-z = 0 (2.7)

Our algorithm uses a gradient type numerical search to determine values of the digital processor gains such that the

conditions in Eqn. (2.7) are satisfied. Because the synthesis softwa._e uses an iterative process to determine optimum

values for the digital processor gains, the user must provide the software with an initial guess for A z, B e, Cz, and D z.

The compensator corresponding to these values must stabilize every plant perturbation considered in (2.6).

Obtaining a suitable stabilizing initial guess can sometimes be a difficult problem. We refer the interested reader to
Reference 1.



SECTION THREE

M-FR, E DOCUMENTATION

3.0 STANDARD VARIABLE DEFINITIONS

Many of the M-Files discussed in this document require similar input variables or provide similar outputs. To

simplify the documentation of these M-File_ a set of standard variables are used throughout this document. They are

defined in Table 3.1 with Matlab variables and functions boided.

Variable

nplt

crop

Table 3.1 Standard Variable Definitions
I

Description

Plant matrices in the form

plant is

pit = IF, G; H, J] where the state-space representation of the

,i(t)= Fx(t)+ Gu(t) (3.la)

y(t)= Hx(t)+ Ju(t) (3.Ib)

or x(m,n+l ) = Fx(rn, n) + Gu(m,n) (3. lc)

y(m,n) =/-/_(m_) + Ju(m,n) (3.1d)

depending on the value of stp defined later.

Number of states in (3.1), 3r equivalently the number of rows in F

Multirate compensator gain matrices. Given the state-space representation of the digital

processor

=,(m,n + l) = Az(n)'_fm,n)+ Bz(n)y(m,n ) (3.2a)

_(m,n) = Cz(n)_(ra,n)+ D:(n)y(m,n) (3.2b)

where m=O,l .... and n=0,1,...,N-I, so that the gain matrices, A=, Bz, Cz and D=, are

periodically time-varying, cmp has theform

rrA.o) B:(o)"I[A:(l)
emp=LL co)D:(0)J'Lc. I)

If A z, Bz, C z, and D: are constant, then

__rA-(0)
¢mp LC_(0)

Bz(I) ] "Az(N-I)B.(N- I)]]

B.(O)]
 (o)j

(3.3)

(3.4)

and it is assum_,_ that Az(O)=Az(I) .... =A z(h/-I ), Bz(O)=Bz(l ).... =Bz(N-i), etc.

The software automatically deduces from the size of crop, the value of ncmp and the

number of compensator inputs whether the digital processor gains are periodically time-

varying or not.

Continued on following page...



Variable

ncmp

sip

stppbtp

sz

Table 3.1 Standard Variable Definitions I continued from prevzo_" page)

Description

Number of digital processor state_ in Eqn. (3.2), or equivalently the number of rows in A:.

If stp > 0 then stp is STP, the shortest sample/update period of the compensator. See

Section 2.1.1, and pit describes a continuous plant.

If stp = 0 thee, the plant matrices pit describe a discrete system whose sampling rate is

one STP of the compensator, and pit describes a discrete plant.

Number of STP's per BTP. stppbtp = N. See Section 2.1.1.

Sampling schedule for me compens "or output, su has two forms

Case I: sn is a matrix, su must have as many columns as there are compensator outputs,

and must have N rows (A = BTP/STP). Each element of su has a value of 1 or 0. A 1

in the i #z column andj _ row of su indicates that the i_ compensator oamut is updated

at the j_ STP within the current BTP. A 0 indicates no update and the previous value

is held. For example, given a two output system with the following sampling schedule

Output #1 _ ZOH
= update activity

Output #2 _ ZOH
N=3

STP_ _"_ BTP

Case II:

the corresponding value of su is

(3.5)

su is a row vector. The id_ column of su specifies the sampling period of the i_

compensator output hold in number of STP's. For example, su=[ I 4] specifies that the

first output is updated every STP and the second output is updated every fourth STP.

This form assumes that the updating is synchronized on the first STP of the B'I"P.

Sampling schedule for the compensator input, sy has the same form as su except that it

specifies when the plant output (the compensator input) is sampled.

Sampling schedule for the compensator states, sz has the same form as su except that it

specifies when the compensator's digital processor states are updated.



3.1 MODELING M-FILES

3.1.1

Format:

Description:

Inputs:

Outputs :

mr2etis

[ae,be,ee,de ]= mr2etis( crop, ncmp, su, sy, sz, stppbtp:

Converts a multirate system into an ETIS with the form:

:,m.0,/
v(m n+l) j

x(m+ l,O)=aex(ra.O)+be_ " ": 1

i = cex(m,O) + de i

u(m. N - I )] Lv(m. N - 1)]

crop, hemp, su, sy, sz, stppbtp The compensator description. See Table 3.1.

ae, be, ¢e, de The ETIS matrices in Eqn. (3.6)

3.1.2

Format:

Description:

Inputs :

Outputs :

mr2ptv

[P, nu. ny, nzl--mr2ptv(cmp, ncmp, su. sy, sz, stppbtp)

Converts a muitirate system into a periodically time-varying system of the form

.r_m,n +1 ) = A(n)x(m,n) + B(n)y(m.n)

u(m,n) = C(n)x(m,n) + D(n))_m.n)

cmp, ncmp, su, sy, sz, stppb*p The compensator description. See Table 3.1.

P The periodically time-varying system matrices tn Eqn. (3.7), where

. rro,o, VD(N-I)C(N-I:]]=LLB(O)a(o)JLo(,)A(l)J""l.B(U-lta(N-i

nu Number of inputs u in F4n. (3.7)

ny Number of outputs .v in Eqn. (3.7)

m Number of states x m Eqn. 13.7)

(3.6a)

(3.6b)

(3.7a)

(3.7a)

(3.8)
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3.1.3

Format:

Description:

Inpu , :

Outputs:

ptv2etis

[ae, be. c¢, de]=ptv2etis(P, nu, ny, nz, stppbtp )

Converts a periodically time-varying system into its ETIS of the form of Eqn. (3.6)

P, nu. ny, nz The periodically time-varying system matrices. See Section 3.1.2

stppbtp See Table 3.1

ae, be, ce. de The ETIS matrices. See Eqn. (3.6)

3.1.4

Format:

Description:

Inputs:

Outputs :

sr2etis

[ae. be, ce. de ]=sr2etis(a, b, c, d, stppbtp )

Converts the single-rate system m Eqn. (3.9) into an ETIS with an N of stppbtp, and the form of
Eqn. (3.6)

.r_m,n + 1) = a(n)x(m,n) + b(n)y(m,n) (3.9a)

u(m,n) = c(n_(m,n) + d(n)y(m,n) (3.9b)

a, b, c, d The single-rate systems mamces. See Eqn. (3.9)

stppb_ The desired N of the new ETIS. See Table 3. l

ae, be, ce, de The ETIS matrices. See Eqn. (3.6)

3.1.5 stack

Format:

Description:

b_puts :

[y]= stack (w. stppbtp )

Converts a traditional discrete-time vector w into an ETIS vector y

w A matrix whose columns contain the values of the vector y(m,n) for Nk successivc samples times.
where k is an integer. The mawrix w has the form

Outputs :

w= [y(0,0), v(0,1) ..... )'(0,N- l) y(i,0), y(I,l) ..... 31 I.N-1) ..... y(k-l,N-I)]

y is written using the double index notauon of Section 2.1.

stppbtp See Table 3.1.

y An ETIS vector of the values ofy E (the ETIS of),) with the lbrm

(3.10)

FroO!rlO1
LLv(O.N- I) .y(l.N- I)

y(k - I, !)

y(k-I,N - I)

(3.11)



3.1.6

Format:

Description:

Inputs:

Outputs :

unstack

[w 1=unstack_y, stppbtp ,_

Convens an ETIS vector y into a traditional discrete-time vector w.

y An ETIS vector of the form of Eqn. (3.11 )
stppbtp See Table 3.1

w A vector of the values ofy(m,n) as in Eqn. (3.10)

NOTE: Additional M-Files used in support of those descnbed in this section are described in Appendix B.

!1
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3.2 SIMULATION M-FILES

3.2.1 mrsim

Formal:

Description:
[y, t] =mrsim(plt, npit, cmp, ncrap, su. sy, sz, stppbtp, simpstp, inputl, outputl, ur, stlp, X0)

Generates a time response simulation of a continuous or discrete plant in feedback with a multirate

compensator. The routine assumes positive feedback as shown below with the continuous inputs

and outputs of interest sampled or updated every stp/simpstp seconds. This configuration allows

the user to simulate the inter-sample response of the muitirate system.

Plant

Multirate
Compensator

Tf = $tl:_impstp

Inputs:

Outputs :

plt, npit A description of the plant, see Table 3.1.

crop, ncmp, su, sy, sz, stppbtp,A description of the multirate compensator, see Table 3. I.

simpstp This routine can calculate the response of the closed-loop system between the

sample/update activities when the plant is continuous (sip > 0). simpstp is the number of

simulation steps per S'I'P of the compensator, simpstp must be an integer greater than zero and
simpstp = I if sip = O.

inputl A vector specifying which plant inputs are connected to the compensator outputs. For

example inputl = [I 4] indicates that the compensator outputs are connected to the first and
fourth plant inputs.

outputl A vector specifying which _lant outputs are connected to the compensator inputs. For

example outputl = [2 4] indicates that the compensator inputs are connected to the second and
fourth plant outputs.

ur The discrete input vector containing the values of the input at every (stp/simpstpl time for
k.stppbtp.shnpstp sample times, ur has the form

ur = [ up (0,01, Up(0, I I..... up (k- i, stppbtp, simpstp - I I1 ¢3.12 )

Note that in Eqn. (3.12) the sample/update period is one stp/simpstp. This sample period should

not be confused with the sample r,eriod of the multirate compensator which is simply one stp,

The second index in the double index notation m Eqn. (3.12) takes on values between zero ard
siml_tp, stppbtp.

sip _ce Table 3.1.

XO A vector containing the initial conditions of the plant state vector. If XO is omitted, the initial
conditions are assumed to be zero.

y A vector containing the response of the plant every (_l_'Shnl_tp) time. y has the form

y = I ._/,(0.0). yp(O. I )..... yp(k- I. stppbtp, simpstp - I )l (3.13 )
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Comments:

3.2.2

Format:

Description:

Inputs:

Outputs :

Note that the secord index in the double index notation corresponds to the second index of
Eqn. 13,121

t a vector containing the rimes corresponding to the columns of y. When sip = 0 then t indicates the

number of sampling periods.

This M-File uses the ETIS of the system to compute the time domain response. Hence, if k in

Eqn. _3.12) is not a multiple of simpstp.N where IN=BTP/STP) the system response is only
simulated to the nearest multiple of simpstp-N

mrfeedback

[ae. be, ce, de ] =mrfeedback( pit, npit, crop. ncmp, su. sy, sz, stppbtp, inputl, outputl, stp)

Creates a closed-loop ETIS system from a discrete or continuous plant, depending on stp, and a
multirate compensator using positive feedback.

pit, nplt The plant description. See Table 3.1.

cmp, nemp, su, sy, sz, stppbtp The muitirate compensator description. See Table 3.1.

inputl A vector specifying which plant inputs are connected to the compensator outputs. For

example inputl = [I 4] indicates that the compensator outputs are connected to the first and

fourth plant inputs.

outputl A vector specifying which plant outputs are connected to the compensator inputs. For

example outputl = [2 4] indicates that the compensator inputs are connect.*d to the second and

fourth plant outputs.

stp See Table 3.1. If s_ is omitted mrfeedback assumes stp=O.

a¢, be, ¢e, de The system matrices of the ETIS closed-loop system with the form of Eqn. 13.6). The

inputs and outputs of this system are the inputs and outputs of the discrete plant
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3.3 SYNTHESIS M-FILES

The synthesis algorithm is implemented as a series of script files. They allow the designer to optimize the

performance of the closed-loop system shown in Figure 3. i by calculating values of A:, B z, Cz, and D:, such that the

cost function of Eqn. (2.6) is minimized. There are three distinct steps to the optim;zation process: 1) entering the

data which describes the problem: 2) discretlzing and preprocessing the data: and 3) optimizing the compensator

gain values. Each step of the optimization process is described in detail in the following paragraphs.

Although the synthesis algorithm was designed to solve the multirate sampled-data problem, it is fairly general

and can be applied to a variety of related problems as well. It can compute optimum compensator gains for a

sampled-data system consisting of a continuous plant in feedback with a discrete compensator as shown in

Figure 2.1. or for a discrete system consisting of a discrete plant in feedback with a discrete compensator. In either

case, the compensators may be single-rate or multirate and may have either time-invanant or periodically time*

varying digital processor gains.

3.3.1 Input Variables

The synthesis algorithm looks for specific Matlab "'workspace'" variables to define the optimization problem.

IA "'workspace" variable is defined from the ,> prompt as opposed to being passed as an argument to a function.)

These variables define things such as the plant dynamics, the cost function ar,d the compensator structure and are

defined in Table 32. The user must assign values to these variables before beginning the optimization. This can

either be done manually or automatically from a script. An example of a script which defines these variables is

provided in Appendix D.

Zero Order Hold(s)

W

Plant
Cont+nuous or Discrete

I _mr)+l) = Az(n)z_mn ) + Bz(n)y_n )
-u(_n)= Cz(n_m,_+Oz(n)_n)

Digital Processor

Figure :_ 1 Clt)_ed-lo,)p Muir=rate S_lenl

Yc

Ys

] Tmn)

'__ampl_rls)

_mn)
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Variable

Np

pit

Table 3.2 Matlab Workspace Variable: )efimng Optimization Problem

Description

The number of plant perturbations, Np=i indicates only the nominal pant is defined.
Section 2.3

State-space matrices of the plant(s). Given the i_ continuous plant perturbation

.r.(,>=F,<,,>+
l witoJ

I :"ci(t) [ = (u/(t)l

See

(3.14a)

(3.14b)

or the i th discrete plant perturbation, depending on the value of sip defined later,

xi(m,n + I) = Frri(m.n)+ Giui(m,n>+ wi(m,n ) (3.14c)

Vci(m'nll (ut,m.n,}

where u is the control input: w i is zero mean white noise input.: Yci is the criterion output:
and Ysi are the outputs which are sampled by the compensator. Then

L.2 <...,,,11
"LHNp .SNpjj ,3.15)

For convenience we assumed in Eqns. (3.,4> that the input vector is partitioned into

the control input u i and the disturbance input w i. The software, however, can accommodate

a more general form for the input vector. Using the variables u¢ol and ncol. defined later.

the user can specify which inputs correspond to control and noise inputs respectively. Any

row of the input vector can be either control, disturbance or both. (We interpret an input

vector specified as both control and disturbance as tv,'o separate inputs, one a control input

and the other a disturbance input whose distribution vectors have the same values.

Similarly, the outputs vo and Yet are specified by crow and stow respectively, and

any row of the output vector can be criterion output, sensor output or both.

NOTE: For a discrete plant, the process noise dismbuqon matrix is unity.

A vector of the PSD values of the white muse disturbance w i. If

Wi_( r) = E{wdt - r Iwf(t)} _3.16a_

(it if 14"i(6(k i+ 6{ j )) = E{wii m. n )wTfm + k.n + ) i} {3.16b)

depending on the value ofstp, then

_tx=:wl iv, ... w_,,pI

continued on ]OIIowin_t page...

. " • j
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Table 3.2 Matlab Workspace Variables Defining Optimlzauon Problem (continued from prevwus page )

Variable Description

VlP

The PSD values of the dtscrete sensor noise covariance. If the output, sampled every STP,
is

where

then

ys,_k)= Hixi(k) + vi(k)

Via(j) = E{vi(k)v_(k + j)]

vr=[V I I/_ ... VNp ]

(3.17)

ncoi

ucoi

A vector specifying which columns of Gi correspond to w i. If n¢o! = [ I 4], then the plant

disturbance vector w is comprised of the first and fourth plant inputs.

A vector specifying which columns of Gi correspond to ui. If u¢ol = [2 4], then the plant

control input vector u is comprised of the second and fourth plant inputs. (Again. we

interpret an input vector specified as both control and disturbance as two separate inputs.

one a control input and the other a disturbance input whose distribution vectors have the
same values.)

stow A vector specifying which rows of C/correspond tOysi. If stow = [1 3], then the first and

third continuous plant outputs are sampled and connected to the compensator.

crow A vector specifying which rows of Ci correspond to Yci. If srow = [ ! 3], then the first and

third continuous plant outputs are used to calculate the cost given in Eqn. (3.18).

qla, q2a, maThe cost function weighting matrices for either a continuous or discrete cost function.

depending on the value of sip defined later. The cost function has the form

Jcontinuous = lira E ycT/(t)gO) Mi][ yci(')
t_** = . (22ijk uiu) j[ t3.18a)

or

_. Stp_p- I
, M,lr,c,,m.,,,Jdiscrete = lim _

"-'- ,,=o tL",''.",JL ;r c_,jL _,i_,,.n,
t3.18b)

where i corresponds to a particular plant condition.

qla =[QII QI2.-. QINp]

q2a =[Q21 Q22 ... Q2Np]

m= INl N2 ,,. ,V._l

qa and ru must be symmetric and positive semi-definite.

If m,, is left undefined its value is assumed to be zero.

I
-' II

continued on lollo_mg page..
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Table 3.2 Matlab Workspace Variables Defining Optimization Problem (connnuedfrom previous page

Variable Description

crop The compensator gain matrices as defined in Table 3. I. The digital processor gains can be
either periodically time-varying or time-invanant,

IMPORTANT: The user must provide an initial guess for crop which stabilizes all plant
perturbations.

cmpfree

SU, sy,sz

This matrix specifies which of the gains in crop are fixed, cmpfree has the same

dimensions as crop, bat its elements are either 0 or 1. A 0 indicates that the corresponding

element in crop is fixed and should not be opumized. A 1 indicates that the corresponding
element in crop is free and can be optimized.

The sampling schedule description. See Table 3.1. By selecting appropriate values for su,

sy, sz and Stppbtp the designer can specify whether the compensator is multirate or single-
rate.

Stppbtp

sip

The same as stppbtp in Table 3.1. Note that the first letter of Stppbtp _s upper case,

indicating this is a global _orkspace variable. See Section 3.3.2.

STP as defined in Tab;<, 3.1.

Ifstp > 0 the algonmm assumes that the plant (pit), the processor noise (wxx) and the

cost weighting matrices (qla, q2a, and ma) are all defined for a continuous

plant in feedback with the discrete compensator.

If stp = 0 the algorithm assumes that the plant (pit), the processor 'loise (wxx) and the

cost weighting matrices (qla, q2a, and ma) are all defined for a discrete plant

in feedback with the discrete compensator, and that the sampling period of the

discrete plant is one STP of the multirate compensator

! i

3.3.2

Format:

Description:

Inputs:

Outputs :

Comme_.r.

mropt_init

mropt_init

This script operates on the workspace variables defined in Table 3.2. It discretizes (if necessary.) the

plant, process noise and cost function; and defines a set of global workspace variables used by the

optimization script (mropt optim _. This script must be rerun after making an> changes in the

workspace variables defined in Table 3.2. with exception to changes in the values of crop or
cmpfre¢.

mropt_init is a script which uses the workspace variables defined in Table 3.2.

mropt_mtt save it's output to the global workspace vartables defined m Appendax A.

The global workspace variables defined by mropt_init are used by both the optlmizauon scr, pt

mropt_optim and by the M-File ¢al¢_LQGeost. All global variables generated by mropt_lnlt

begin with a capital letter. This helps to differentiate them from other workspace variables. A

bnef description of these global variables is given m Appendix A.
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3.3.3

F_rmat :

Description:

Inputs :

Outputs :

('omments:

mropt_optim

mropt_optim

mropt_optim computes optimum values of the dig,tal processor gains such that the cost function
defined in Eqn. t3.18) is minimized.

mropt_optim uses the global workspace variables generated by mropt_init in addition to zhe three
workspace variables oefined in Table 3.3.

The script returns a value of the cost function, the gradient of the cost function with respect to the

free compensator parameters, and the optimum values of the digital processor gains. These

values arc "'.utomatically displayed on the computer screen and simultaneously stored in the
workspace variables defined in Table 3.4.

1) As already noted, if the user modifies the problem definition by changing the values of the

variables defined in Table 3.2, the script mropt init must be rerun before running ,nropt_optim.
The exceptions are changes to the variables defined in Table 3.3.

21 mropt_optim can be computationally intensive. The user can abort the optimization with a

Control-C key sequence. Also see mropt_extract. Section 3.3.4

i

Variable

crop

crop free

dseale

Table 3.3 Input Workspace Variables for mropt_optim

Description

This variable contains the compensator gains and is the same variable as described in

Table 3.2. These are the starting values for the optimization and must stabilize all plant
perturbations.

This matrix specifies which of the gains in cmp are fixed and is the same vanable as
descnbed in Table 3.2.

During optimization the compensator gains are scaled using a variable named dscale to help

improve the numerical accuracy of the search. They are scaled as follows

Xscaled = inv (dscale ). Xunsc aled

where Xunscaled is an unscaled vector containing the free compensator gains and )(scaled

are those values scaled. Typically, dscale is a diagonal matrix chosen so that all the

elements in Xscaled have the same magnitude. The user can either manually set dseale or

have mropt optim set it automatically. If dscale exists and has the correct dimensions

then mropt_optim uses that value of dscale, otherwise a new value for dscale, based on the

current values in crop, is automatically calculated. Typing "'cl.oa_r dacJtl.e" before

running mropt_optim forces the routine to scale the problem based on current values in
crop
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Variable

cmpf

jco6t

djdp

Table 3.4 Output Workspace Variables for mropt optim

Description

This contains the optimized values of crop after mropt_optim has completed the
optimization.

This contains the value of the cost function after mropt_optim has completed the
optimization.

This contain, a scaled value of the gradient of the cost function wuh respect to the

com,',ensator values after mropt_optim has completed the optimization.

3.3.4

Format:

Descriptum:

Inputs:

Outputs:

CommprltS :

mropt_extract

mropt_extract

After aborting the script mropt_optim, usually with a Control-C key sequence, the script

mropt extract can extract the value of the "'optimized" compensator at the last iteration.

None. Can only be rerun after abortmg mropt_optim.

The optimized values of the digital processor gains at the last iteration before mropt_optim was

aborted are displayed on the computer and stored in the workspace variable erupt.

Sometimes it is necessary to abort retool optim before Js has completed "he opumization. The user

might wish to rescale the free parameters by changing dseale, or might decide to free up

additional gains in crop by char, ging cmpfree. The user can restart the optimization from the last

iterauon by setting crop=erupt and rerunning mropt_optim.

3.3.5

Format:

Description:

Inputs

Outputs :

Comments:

eaic__LQGcost

[jcost I=caic_LQGcost 0 I

Calculates the discrete LQG cost assuming a sampling period of one stp. This rout;ne uses the

global workspace variables computed by mropt_init. Use this routine to lind the minimum value

of the cost function attainable by mropt optim

j = 0 or is undefined, then the routine calculate the sum of the LQG costs fl)r all Np plant conditions
correspondin_ to the cost Jdlscrete gtven in Eqn. (3. i8 )

O<j<No then the routine calculates the LQG cost fi)r only the jth plant condition

jcost The value of the [,QG cost function

cale_LQGeost uses the Controls_Toolbox routines dlqr and dlqe. l'hey requtre that ram Table 3.2
be positive-definite.

NOTE: Additional M-Files used in support of those described in this sectmn are described m Appendl_t B.



SECTION FOUR

SYNTHESIS EXAMPLE

4.0 P_,OBLEM DESCRIPTION

In this section we present an example design problem which utilizes the M-Files discussed in the previous

section. Our objective is to design a multirate compensator for a lightly damped mass-spring-mass system.

The mass-spring-mass (MKaM) system is shown tn Figure 4. I. It consists of two masses connected by a spnng

and damper. The control inputs are the force inputs Ul and u2 ; the sensor outputs are the displacements x 1 and x 2;

and the disturbance mpul is w. The sensor outputs are corrupted by discrete sensor noise (not shown on figure) with

covanance v. Nominal values for the plant parameters, along with those for one known plant perturbation, are given

in Table 4. i. These parameter values result in a system ,,_ith two poles at the o, igin associated with x I. and two

lightly damped poles associated with x 2. The open-loop poles are listed in Table 4. I. A M-File v..htch defines the

system matrices for the MKM system is given in Appendix C.

The goal of our design ts t_ increase the damping coefficient on the lightly damped poles to [=0707 without

shifting their natural frequency, and to move the two poles at the origin so that the x 1 response has a frequency of

0.825 radJsec with a damping coefficient _=0.707.

_----- xl ----_

ol--.
/'1

//////

M

_-- xa--..-_

m ----...o,. 1N

/ "//// // ,, ,// , / "" / " /• , / / /

Figure 4. l Mass-Spnng-Mass System

Table 4. I Mass-Spnng-Mass Parameter Values

Nominal Plant Perturbed Plant

_4 I 0 kg 1.0 kg

m 0.1 kg 1).2 kg

k 0.01 N/m 0.01 N/m

b 0.01 Nslm 0.01 N.s/m

El wT(t-_ )wit)} O.l& r_N 2 0.1& r)N 2

El vr(k+j )_k )} 0.001 &j)m 2 0.001 &j )m 2

()pen-Loo_ Poles 0. 0. 4).055+ 3.316i (_. 0. -0 03ffL2.449i



W.A,_ lP..ANK NOT

4.1 COMPENSATOR DESIGN

Our compensa,or design followed the preceding steps. All computer inputs and el:pc ,; _1 the following

paragraphs are in :hi_ , font. Boldad l:e=l= should be input by the user, plain text is returned by the
computer, instructto,iai comments are in italic.

Step h Select the weighting matrices for the quadratic cost function given in Eqn. (2.6) which characterize
the desired closed-loop Performance

The cost fmlction given in Eqn. (2.6) is the sum of the costs associated with each plant perturbation. In our case

we have two plants - tl'c nominal end the perturbed plant. We determined the weighting matrices for our cost

function by designing two continuous time LQ regulators which placed the closed-loop poles for the nominal ano
perturbed plants in the desired locations. The cost functions are

•S.on,i.ai = EIS.Sx? + 2.2._+ 10000u? + 'o.]i/1o.6 (4.la)

: + +,041/ o
where :he costs have been scaled so that the LQR cost for each is unity. The cost fur,-tion characterizing the

perform,_ace of our muitirate compensator is the sum of the these two cost functions. By minimizing (Jnorrunal +

Jperturlx_J the optimizatiop, routine will attempt to find a single compensator whose perlbrmance approaches that of

the LQR designs for both the nominal a,d the perturbed plant. Of course we do not expect such a compensator to

exist. Instea_ the resulting compensator will represent a compromise between good performance at the nominal
plant condition and good performance at the perturbed condition.

Step 2: Select an appropriate compensator structure and sampling schedule based on the desired closed.
loop performance

The ,'!osed-loop LQR system has a fast mode associated with x I and u I and a slow mode associated with x 2

and u2. We selected a multirate compensate| which capitalized on this structure. It consis:s of two coupled first-

order loops, one from x I to u I and another x2 to u2 . A block diagram of this structure is shown in Figure 4.2. The

Xl to u I loop is sampled and updated every 0.8 seconds while the x2 to u 2 loop is sampled and updated four time as

often, every 0.2 seconds. These sampling rates are approximately I0 time the desired closed-loop bandwith for each

loop. In addition, the compensator accounts tbr a one-half samphng period computational dela), h's samplingschedule is shown in Figure 4.3.

FILIMEI_

ul _"__Ma_-Spring-Mass

, u2 _ 4th Order Plant

1st Or"--_derCompensator

State update = 0,8 sec

1stOider Compensator

State update = 0.2 sec

i =3
J T=0.2 s

x1 Command

x,2 Command

Figure 4.2 Block Diagram of Closed-Loop Multirate System

IJ
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xl ,_, = ', i I = = _ Sampler

x2 ,_, ,_I ?I ?',_ Sampler

Ul I--?', : I I',1t ZOH

zoH
Zslow,_,_ : : : : : I ; State Update

Zfast ?_ ?: ?I ?', <_ State Update

STP=O,1 ,ec _ _ LQ_ BTP=0.8 sec

<_ = sample/update activity

Figure 4.3 Sampling Schedule for Multirate Compensator

Step 3: Design a compensator with the sampling schedule and structure selected in Step 2 that stabilizes all

plant perturbations. This will be the starting point for the optimization.

We designed a compensator using successive loop closures and root locus for the nominal plant. The

compensator has the same structure and sampling schedule as the muitirate design discussed in Step 2 except there is

no input coupling and we did not account for computatior, al delay. This compensator does however stabilize both

the nominal and perturbed plants even with the computational delay and so can be used as the starting point for the
optimization.

Refer to Reference l for an introduction to successive loop closures.

Step 4: Load the problem def'mition into Matlab's werkspace variables def'med in Table 3.2.

We defined the workspace variables using the Madab script provided in Appendix D. To load the workspace
variables for this example, type

>>m.ropt _m.km

Step 5: Initialize the work, space variables and generate the necessary global variable using mropt init
Type

>>m.vopt_tT.,tt see Section 3.3.2

At this point yt, u can comput, he minimum value of the cost function as follows (see Section 3.3.5)

,>¢ll.¢_/.,QOeo,.t: see Section 3.3.5

>, ans =

2. 0108e+00 this is the minimum cost our desi_n could achieve
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Step 6: Calculate optimum values of the digital processor gains using mropt_optim

A partial output of the optimization follows

_ropt_opt£m see Section 3.3.3

Automatically selecting dsca!e

Calculate gradient only? (y or

f-COUNT =

FUNCTION =

a diagonal dscale is automatically selected ifthe variable

dscale does not exist, or is not compatible with the

current compensator

n ) n if" we repliedy the algorithm would compute only

the gradient of the c¢,st with respect to the free

digital processor gains and the value of the cost

for the current compcnsator gains in crop

the total number of function evaluations

the value of the cost function at the current iteration. Refer to Matlab FMINj
documentation

f-COUNT FUNCTION STEP-SIZE GRAD/SD

2 176 0.01 -9.48e+07

-> Plant 1 unstable while calculating j

-> Plant i unstable while calculating j

-> Plant 1 unstable while calculating j

-> Plant I unstable while calculating j

-> Plant 1 unstable while calculating j

-> Plant 1 unstable while calculating j

-> Plant 1 unstable while calculating j

-> Plant 1 unstable while calculating j
-9.9655e-01

-1.6399e-02

1.0030e+00

-i.0676e-02

-2.2977e-02 thesearethevaluesofthescaleddigitalprocessorgains
-9.4363e-01 atthecurrentiteration

-1.3703e-03

1.0529e+00

LINE-SEARCH

The algorithm encountered a destabilizing

solution. It automatically adjusts the step

size and continues the optimization

1.0030e+00

1.0036e+00

1.0529e+00

1.00d5e+00



313 4.62 14.2 2.45e-13
Optimization Terminated Successfully
Gradient less than options(2)
NOOFITERATIONS=314
-8 0984e-01
-i 6700e+01
1 8697e+00
2 2849e+01
7 4219e-01

-7 3479e+00
-8 6882e+00
7.9308e+00
1.0706e+00
3.8424e-03
1.0367e+00
i._037e+00

int_st

**** Final Results
Gain Gradient

-_.6197e-01 -4.6527e-06
-1.6700e+01 6.6547e-04
1.8697e+00 -2.8675e-04
2.2849e+01 4.5050e-04
7.4219e-01 1.6576e-04

-5.5109e+00 -8.9955e-04
-8.6882e+00 -4.8353e-05
7.9308e÷00 -8.5171e-04
8.5648e-02 -i.0838e-04
1.9212e-03 6.9640e-04
6.2202e-01 3.4133e-03
1.4037e-01 3.2564e-04

these are the unscaled digital processor gain values

and their scaled gradient values

Final cost = 4.62482 the optimum value _'thecost_nction

Optimized compensator gains

cmpf =

1.9212e-03 0 1.8697e÷00 -@.6882e+00

0 1.4037e-01 2.2849e+01 7.9308e÷00

8.5648e-02 0 -1.6197e-01 _.4219e-01

0 6.2202e-01 -1.6700e÷01 -5.5109e+00

Elapsed time: 1516.05 sec

25
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4.2 DESIGN ANALYSIS

We looked at two criteria when evaluating our multirate design: 1 ) the final cost; and 2) the step response to a

command input.

4.2.1 Final Cost

The final cost for the multirate compensator is calculated automatically by the optimization routine

mropt_optim. The LQG cost is computed by the function ealc_LQGcost in step 5. For our system

Jmuhirate = 4.6 and JLQR = 2.0

4.2.2 Step Response

We obtained the response to a unit command step to Xl as follows

,, [ a, b, ¢, d] _; get the nominal plant

,,!o_ [b zerol (4,1) ] ;c- [c; [1 0 0 O] ] ; create a reference iaput

>>da[d zerom(4,1);O 0 -111

>>ur. [zerom (2,100) ; onel (1,100) ] ; generate a step input function for the input
and compute the time domain response, see Section 3.2.1

>>[y,t]mLrai4m( [a bpc d],4,c_t[pf,2,1u, aiY, alz,Stppbtp, 1, [I 2], [$ 3],UE, Stp);

assuming cmpf. su. sy, sz, Stppbtp. and stp were previously defined and

that cmpf contains the optimized values of the digital processor gains

•>plot(t,¥([1 3],:))

We similarly obtained the step response for the LQR design. The results are shown in Figure 4.4.

As expected the performance of the multirate design does not match that of the LQ regulator. The LQ regulator

was optimized for only the nominal plant. The multirate designs on the other hand represent a compromise,

stabilizing both plants and providing "'optimum" performance for both. In addition, the LQ design was a continuous

full-state design whereas the multirate design was discrete second order and used only two state measurements.

2

l

1.5[

_ 0.5

ID

'_ 0

-0.5

-1
0

.," ".. ...- ............ .,... "'--.

.." .. X1
." .. .. "',.., . . _

: .." LQR

. •.........Multirate

Time (Seconds)

Figure 44 Response of MKM _y_tem to command _tep response to x I
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APPENDIX A

GLOBAL WORKSPACE VARIABLES

The following global workspace variables are defined by mropt init. Note that the first letter of every global
variable is capitalized. " -

For each plant perturbation, the discrete closed-loop system can be written in the form:

xi(m'n+ i ) = Fix(re'n)+ Giu(m'n) + B4vi (A.I)

.vi(m.m= Hix(m.n)+ Vw i
(A.2)

ui(m,n) = [Sl(n)P(n)S2(n) + S3(n)ly s(m,n)
(A.3)

where

and w is a discrete zero mean white noise input with

(A,4)

E{wi(m,n)wiT(m + j,n + k)} = {_(k)+ 6(j)}/_
(A.5)

The subscript i indicates the i th plant condition and the overbarred matrices are the dnscretized plant matrices. The

matrices SI, $2, and $3 are periodically time-varying switching matrices which model the multirate sampling
scheme, and P is a matrix of the compensator's digital processor gains

The discrete cost function lot the system in Eqns. (A.I-A.3) can be written as

, ,,o
m-_.,,, ,=ln=o iL'_lm'n'J LM' I (A.6)

See Reference I for more information.

The global Matlab workspace variables are then defined as follows.

Plant Description:

Np = number of plant conditions

MI; = [ Fi, F 2 ..... FNp j

MG= [ GI, G2 ..... GNp ]

MW= f wl. % ..... I,_p 1
MH= [HI, t!2 ..... HNpI

MV= [VI . V2..... VNp I

MR= [R I . R 2 ..... RNp]

NcF = number ol columns m b t

NcG= number of columns in GI

NcW= number of columns in W i

Nell= number of columns in Hi

NoV= number of columns in VI

NoR = number of columns in Ri
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Compensator Description:

Nzhcmp = number of states in the periodically time-varying model of the muitirate comper, sator
S_pbtp = the global version of s_pb_

Slk = [SI(0), SI(0) ..... SI(N-I)I Nsl = the number of columns in SI

S2k = I$2(0), $2(0) ..... S2(N- 1)l Ns2 = the number of columns in $2

S3k = [$3(0). $3(0) ..... S3(N-I)I Ns3 = the number of columns in $3

Pry: abs(Pry) = number of columns in the compensator gain matrix [A z. Bz., Cz, Dz]" Pry is positive if the

digital processor gains are time-invariant and negative if they are periodically time-varying.

Cost Function Description:

MQI= [QI I, QI2 .... QI Np]

MQ2= [ Q21, Q22 .... Q2 Np]

MM= [M l, M2 .... MNp ]

NcQI= number of columns in QI i

NcQ2= number of columns in Q2i

NcM= number of columns in Mt

Miscellaneous Definitions:

Ppn. Ppm. and Ppinit : used internally

Ppfree = index to the "tree" digital processor gains

Fed = closed-loop state transi,ions matrix of the last computed ETIS system

Xc_.global = value of the compensator gains at the last iteration

Unstable: If Unstable =0 the compensator gains at the current iteration stabilize the plants
Otherwi_ they destabilize the plant
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APPENDIX B

SUPPORT M-FILES

B.I MODELING SUPPORT M-FILES

B.I.I mrsplit

Format: [a, b, r, d ] = mrsplit(P, n )

Desc:_ption: Separates the composite gain matrix P into its constituents, where

:]
Inputs: P see Eqn. lB. 1)

n the number of columns in a

a, b, ¢, d the gain matrices in Eqn. (B.I)Outp/u _'"

B.1.2

Format:

mrmakesk

Description:

[slk, nslk, s2k, ns2k, s3k, ns3kl= mrmake_'_-_ su, sy, sz, stppbtp )

Inputs :

Outputs:

B.I.3

Format :

Description:

Inputs :

Outputs :

(B.I)

The periodicall) time-varying representation of a multirate compensator in Eqn. 12.2) can be written
as

1 r°,,,  '"lr"m"l ro.,,,= =_Sitn)|B'(n} A_(n)J )+ (B.2)Lx(m'n+l)J LBin) A(n)JLx(m'n)J [ L : JLx(m, n

where Az, Bz. Cz and D z are the digital processor gains and SI. $2 and $3 are switching matrices

which model the compensator's sampling schedule, mrmakesk creates the periodically time-

varying switching matrices given the sampling schedule description.

su, sy, sz, stppbtp see Table 3. i

slk = [SI(0) SIll) ... Sl(stppbtp-I )]

s2k = [ $2(0) $2( I ) ... S2(stppbtp- 1)1

s3k = [ $3(0) $3( I ) ... S3(stppbtp- l )]

nslk, ns2k and ns3k the number of columns in Sl(.), $2(.) and $3(.) respectively

mrgetsk

[sl. s2. s3 ]=mrgetsktk. slk. nslk. s2k. ns2k. s3k. ns3k_

Extracts the individual switching matrices for a given STP from slk, s2k and s3k.

k an integer specifying for which STP the swifching matrices are to be extracted

silt. nslk, slk. nslk, s3k. ns3k see Section B 1.2.

sl. s2. s3 switching matrices corresponding to Sl(k). S2(k) and S3(k) respectively. See
Section B. 1.2.
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B.2

B.2.1

Format:

Description:

Inputs :

Conments:

SYNTHESIS SUPPORT M-FILES

caic_djdp

djdp= calc_djdp( pguess, dscah)

Used by the routine mropt_oplim to _:alculate _J,e derivative of the cost J with respect to the free
comperlsator parameters. See Section 2.3.

pguess a vector of the values of the free digital processor gains at the current iteration
dscale see Table 3.3.

This routine uses the global workspace variables generated by mropt_init

B.2.2

Format:

Description:

h_puts :

Comments:

calc_j

djdp=calc j (pguess, dscah)

Used by the routine mropt optim to calculate the cost J at the current iteration

pguess a vector of the values of the tree digital processor gains at the current iteration
dscale see Table 3.3.

T'nis routine uses the global workspace variables generated by mropt_init

B.2.3

Format:

Description:

Inputs:

Output:

Conlrle nt$ :

calc_L

[lace 1= calc_L(pL f, g, w, h, ql, q2, m)

Called by calc_djdp to calculate the steady-state values of a Lagrange multiplier. (The multiplier is

used to adjoin the stability ,:quality constraints to the cost function.)

pk gains for the periodically time-varying representation of the muitirate compensator

=FD(i) C(i)]
pk=[P(0),P(1) ..... P(N-l)]andP(i) L B(i) A(i)J (B.3)

Dtt), C(i), B(i), and A(i) are the state space matrices for the periodically time varying

representation of the compensator. See Section 2.2 and Section B. ! .2

I; g, w, h plant description matrices tbr the current plant perturbation corresponding to F,, Gi, W and
Hi in Eqn. (A.4).

ql, q2, m cost weighting matrices for the current plant perturbation corresponding to QI i, Q2i and
Mi in Eqn. (A.6).

lace penodically time varying lagrange multipliers where

lacc =[A¢I) A(2)... A(N-I) A_O)]

and Aft) is the lagrange multiplier for the i th STP

This routine uses the global workspace variables generated by mropt_init



B.2.4 calc_P

Format: [pk]=-caic_P(p)

Description: Called by eaicj and talc djdp to compute the periodically time-varying reprcsentatmn of the
multirate compensator

hzputs: p the digital processor gains in the torm

ID-(i) C,(i) 1
p=[p(0),p(l) .....p(N-I)] where pti)= L_(i) Az(i)J

Output_: pk matrix of the compensator gains for the periodically time-varying representation of the muitirate

compensator

pk = [P(I), P(2), P(3) .... P(N)] where O(t)= Sl(i)p(i)S2(i)+ S3(i)

See Eqn. (A.2) or Section B. 1.2.

Comments: This routine uses the global workspace variables generated by mropt init

B.2.5 caic_X

Format: [xacc ]= talc X(pk, f, g, w, h, v. r)

Description: Called by calc._djdp and cale j to calculate the steady-state covariance values of the closed-loop
system

Inputs: pk matrix of the compensator gains for the periodically time-varying representation of the multtrate

compensator, see Section B.2.4.

f, g, w. h plant description matrices for the current plant perturbation corresponding to Fi. Gi, W. H i

and V in Eqn. (A.4) respectively

r process and sampling noise covariances for the current plant perturbation corresponding to Rt in

Eqn. (A.5).

Comments: This routine uses the global workspace variables generated by mropt_init

B.2.6 disc_cost

Format: [qld, q2d, nxtl=disc_cost lpit, nplt, stp, ql, q2. ml

Descrzption: Computes the discrete cost function weighting matrices such that the cost associated with a

continuous plant in feedback with a single-rate compensator is identical to the c_st associated

with the discretlzed plant in feedback with the single-rate compensator. The continuous cost

function is given in Eqn. (2.6): the discrete cost functmn is given by

N-I f,- . 1' 1_
Jdt.wrete = lim _ 2., E_| 'J

m---_o,' n=O [Lulm'n -JLulm'nl]] _[_.4)

disc_co6t assumes the control input is updated using a zero-order-hold

Inputs: pit, nplt, sip see Table 3. I

ql. q2. m the continuous cost function weighting mamccs m Eqn. 12.6_

Outputs: qld, qld. md the discrete weighting matrices in Eqn. tB.4)
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B.2.7

Format:

i)e sc rzptton :

#lputs ".

Ou_u_:

disc_noise

[w )=disc_noise(wxx, plt. nplt, sip )

Computes the covariance of a discrete-time white noise process disturbance such that the expected

value of the states of a continuous plant, and the expected v.lue of the states of the discretized

plant are equivalent at the sampling instances. Thus. given the continuous plant

x(t) = Ax(t) + Gww(t), where Efw(t)wTtt + r)) -- _( r)wxx

and the plant discretized with a zero-order-hold at a sampling period T

xd(m,n + 1) = AdXd(m,n)+ wd(m, nj" where E(wd(m, nlwY(m + k.n + j)) = (6(k)+ iJ(j))w

then E{xd(m "n)xJ(m, n)} = E{x((mN + n )T)xT((mN + n IT)}

wxx PSD of the continuous processor noise

pit, npit, stp see Table 3.1. The inputs to pit are assumed to be only the process noise

w PSD of the discrete process noise

B.2.8

Format:

Description:

hzputs :

Outputs :

dlyap2

x=dlyap2(a, c, method )

Solves the discrete lyapunov equation

x= a.x.aT + c

a. c system matrices in Eqn. (B.5)

if method = 'Barrels' then the algorithm solves Eqn. IB.5_ using Bartels method

otherwise Eqn. (B.5) is solved using parual sums

x the solution to the lyapunov equation

(85)

B.2,9

Format:

Description:

Inputs:

Outputs :

Comments:

get_cost

[ql, q2, m ]=get co6tdi )

Extracts the cost functton weighting matrices QI, Q2 and M for the i th plant perturbation from the

global workspace variables MQI, MQ2, and [VIM. See Appendix A.

i an index to the desired plant perturbation

ql, q2, m the cost weighting matrices corresponding to QI, Q2 and M respect=very

This routine uses the global work_pace variables generated by mropt_init
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B.2.10

Format:

Description:

Inputs:

Outputs:

Comments:

get_pit

[f, g, w, h. v, r l=get_plt(i)

Extracts the plant matrices Ft. Gi, W, Hi, V, and Ri for the i th plant perturbation from the global

workspace variables MF, MG. MW, MH, MV and MR. See Appendix A.

i an index to the desired plant perturbation

f. g, w, h. v. r plant description matrices tbr the i th plant perturbation corresponding to F i, Gi, 14/,H i,
V. and R i respectively

This routine uses the global workspace variables generated by mropt_init

B.2.11

Format:

Description:

Inputs:

Outputs:

get_ppfre¢

ppfree = get_ppfreetcmpfree, ncmp )

('ailed by mropt_optim to determine which compensator gains will be optimized

cmpfree, ncmp see Table 3.1.

ppfree vector whose elements point to the free elements in cmp

B.2.12

Format:

Description:

Inputs :

Outputs:

Comments:

get_sk

[sl, s2, s3 ]=get_sk(k)

Extracts the swttching mamces SI(L'_ S2(k) and S3(k) for the k th STP from the global workspace
variables Slk, S2k. and S3k. See Appendix A.

k indicates the k th STP of the current BTP. NOTE: k = I, 2 ..... stppbtp

sl, s2, s3 switching matrices for the k th STP corresponding to Si(k), S2(k) and S3(k) respectively

This routine uses the global workspace variables generated by mropt_init

B.2.13

Format:

Description:

Inputs:

Outputs:

nmke_noise

[r]= make_noise(rw, rv)

Creates a compound noise covariance matrix from rw and rv

rw, rv the process and sensor noise covariance matrices respectively

r compound noise matrix of the form
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B.2.14 make_pit

Format:

Description:

Inputs:

Outputs:

{f, g, w, h, v, nzcmp ]=make_pit(pltc, nplt. ncmp, stp )

Creates the compound plant matrices Fi, Gi, W and V for the current plant perturbation. See
Appendix A.

pitc has the same form as pit in Table 3.1 except it describes only a single plant perturbation
npit, ncmp, stp See Table 3.1.

f, g, w, h, v compound plant matrices Fi, Gi, Wand V fer the cu:'rent plant perturbauon respectively

nzcmp the number states in the periodically time-varying representation of the multirale
compensator

B.2.15

Format:

Description:

Inputs:

mropt_check

mropt_check

mropt_check performs elementacy error checking on the data in Table 3.2 and set the variable

err--I if it finds an error in the data. mropt check is called by mropt_init,

None

Outputs: None

B.2.16

Format:

Description:

Inputs:

Outputs:

mropt_global

mr_pt_globai

Called by mropt_init to define t.he global workspace variables

None

None

B.2.17

Format:

Description:

Inputs:

Outputs.

Comments:

mropt_fminu

[x, OPTIONS] = mropt_fminu(FUN, x, OPTIONS, GRADFUN, Pl. P2, P3, P4, P5 ....

P6, P7. PS. P9, PI0)

A modified version of FMINU from the Optimization_Toolbox. Thts version automatically reduces
the search step slz.e when a destabilizing solution is encountered.

See FMINU

See FMINU

Requires the OptimizationToolbox



APPENDIX C

M-FILE MKM

The following ld-File creates the state space matrices for the Mass-Spnng-Mass system of Section 4.0

function [a, D, c, d] =mkm(r.!, m2, k, b)

% [a, b, c, d] =mk.m(ml,m2, k, D)

if nargin~=4

ml=!;

m2=. i;

k=i;

b=0.01;

end;

%nominal plant

t=(1/ml)+(i/m2);

a=[0
0

0

0

1 C 0

0 k/mi b/ml

0 0 1

0 -k*t -b*t];

b----- [0 0

I/ml 0

0 0

-i/ml I/m2] ;

c=eye (4) ;

d=zeros (4,2) ;



APPENDIX D

SCRIPT MROPT_MKM

The _llowing script defines the workspace variables in 'Fable 3.2 _r the example problem of Section 4.0

% S_ript: mropt_mkm.m

% Example script for creating input data for mropt
%

% Creates the following data required by mropt_init
% plt,nplt,wxx,rv,qla,q2a,ma

% ucol,ncol,srow,crow

% sz,su, sy,cmp,stp,Stppbtp,cmpfree

% G. Mason, U.W. 1992

% ..... Continuous plant description .....

Np=2;

nplt=4;

p!t=[];

% Plant #i

% The number of plant conditions

% The number of states in the planss

% Clear the variable which holds the plant data

[a,b,c,d]=mkm(l,0.1,1,0.01);

plt = [a b; c d];

% Plant #2

[a,b,c,d]=mkm(l,0.2,1,0.01);

plt = [plt [a b;c d]];

% Pointer to rows and columns in the plant

ucol=[l 2]; % control input

ncol=2; % process noise input

srow=[l 3]; % sensoz output from the plant

crow=[l 2 3 4]; % criterion output from the plant

% Continuous process noise PSD

% wxx is a compound matrix like plt, it contains wxx for plant #I and #2
wxx=[.l .!];

% Discrete sensor noise PSD

% with same confound form as plt
rv=eye(2)*0.001;

rv=[rv rv];

% ..... Continuous Cost weighting matrices .....

% Output criterion weights

% Use le-8 instead of 0 so that qal & qa2 are positive definite

% The synthesis algorith_ would accept semi-definite qla _ q2a
% but calc LQGcost will not

qlal=diag([5.5 le-8 le-8 2.2]);

qla2=diag([6.5 le-8 le-8 4.8]);

qla=[qal/10.6 qa2/8.0];

% Control input weights

q2a=diag([le4 lel_);
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q2a=[ra/10.6 ra/8.0];

%Cross weighting (ma)
%if there is no cross weighting it can be left undefinedclear ma

% ..... Compensator description .....

% Digital processor gains from successive loop closures designcmp= [ 0.5 0 1 0

0 0 1 0 1

0.08 0 -0.2 0

0 0.6 3 -0.75];

% Sampling schedule

su=[0 0;i I;0 0;0 i;0 0;0 i;0 0;0 I];

% Compensator output updating w/ delay

sy=[8 2]; % Sensor input sampling, multiplexed

sz=[8 2] ; % Compensator state update

sip = .i; % The shortest sampling period

Stppbtp = 8: % The number of stp's in one BTP

% Free compensator gains
cmpfree=[l 0 1 !

0 1 1 1

1 0 1 1

0 1 1 I];

% clear temporary variables
clear a b c d


